

PROFISIM 2

Installationsboard "Unterverteilung mit Installationsschaltungen" zur Fehlersimulation für Messungen nach IEC 60364-6 (DIN VDE 0100-600) und EN 50110 (DIN VDE 0105-100) ₃₋₃₄₉₋₉₀₁₋₀₁

- Hausanschluss mit Haupterdungsschiene
- Simulation von Fehlern über 25 Schalter
- Einfach- und Doppelfehlerschaltung
- Fehlersimulator abschließbar
- Pultförmiges Gehäuse
- Einsatz als Tischgerät oder im Experimentierrahmen

Anwendung

Zielgruppen

Zielgruppe Lehrpersonal (Elektrofachkraft):

- Lehrer
- Trainer
- Ausbilder
- Laborleiter

Zielgruppe Lernende:

- Trainee
- Student
- Auszubildender

Versuchsinhalte

- Nachbildung einer kleinen Unterverteilung mit 3 Stromkreisen
- Prüfung verschiedener Schutzgeräte
- Haupterdungsschiene mit allen wichtigen Potenzialausgleichsleitungen und Banderder
- Fehlersuche in Installationsschaltungen
- Anfertigen von Messprotokollen nach DIN VDE 0100

Beschreibung

Das Installationsboard stellt eine kompakte Hauseinspeisung mit Haupterdungsschiene für eine Verbraucheranlage inklusive eines Fehlersimulators dar.

Es ist vorzugsweise für alle Schulungsmaßnahmen und Projektarbeiten rund um das Thema "Prüfung einer Anlage nach DIN VDE 0100-600" einsetzbar.

Das Board beinhaltet hierzu alle notwendigen Baugruppen einer Hauseinspeisung mit erweiterter Haupterdungsschiene, um Prüfund Fehlermöglichkeiten zu realisieren.

Angewendete Vorschriften und Normen

IEC 61010-1/	Sicherheitsbestimmungen für elektrische Mess-,
DIN EN 61010-1/	Steuer-, Regel- und Laborgeräte
VDE 0411-1	– Allgemeine Anforderungen
IEC 60364-6	Errichten von Niederspannungsanlagen
DIN VDE 0100-600	–Teil 6: Prüfungen
EN 50110	Betrieb von elektrischen Anlagen
DIN VDE 0105-100	–Teil 100: Allgemeine Festlegungen
EN 60529	Prüfgeräte und Prüfverfahren
VDE 0470-1	Schutzarten durch Gehäuse (IP-Code)

PROFISIM 2

Installationsboard "Unterverteilung mit Installationsschaltungen" zur Fehlersimulation für Messungen nach IEC 60364-6 (DIN VDE 0100-600) und EN 50110 (DIN VDE 0105-100)

Technische Daten

Fehlersimulation

Fehlersimulator mit 25 Fehlermöglichkeiten über Schalter

Nr.	Fehlerbeschreibung	Bemerkung
1	Funktionsfehler an Steckdose X1	Leitungsunterbrechung L2
2	Funktionsfehler an Steckdose X1	Leitungsunterbrechung N
3	Funktionsfehler an Steckdose X1	Leitungsunterbrechung PE
4	Funktionsfehler an Steckdose X1	Leitungsvertauschung N-PE
5	Schutzleiterwiderstand / Schleifenimpedanz X1	$R = 5.6 \text{ k}\Omega$
6	Leitungswiderstand L2 / Schleifenimpedanz X1	$R = 16.5 \text{ k}\Omega$
7	Funktionsfehler Lampenstromkreis E1	Leitungsunterbrechung L1
8	Funktionsfehler Lampenstromkreis E1	Leitungsunterbrechung N
9	Leitungswiderstand L1 / Schleifenimpedanz E1	R = 5,1E
10	Schutzleiterwiderstand / Schleifenimpedanz E1	R = 1,0E
11	Isolationswiderstand E1	R L1-PE = 510 k Ω
12	Isolationswiderstand E1	R L1-PE = 1,0 M Ω
13	Isolationswiderstand E1	R L1-PE = 1,5 M Ω
14	Isolationswiderstand E1	$R L1-N = 510 k\Omega$
15	Isolationswiderstand E1	$R L1-N = 1,0 M\Omega$
16	Isolationswiderstand E1	R L1-N = 1,5 M Ω
17	Funktionsfehler an Steckdose X2	Leitungsunterbrechung L1
18	Funktionsfehler an Steckdose X2	Leitungsunterbrechung L2
19	Funktionsfehler an Steckdose X2	Leitungsunterbrechung L3
20	Isolationswiderstand X2	R L3-PE = 1,5 M Ω
21	Isolationswiderstand X2	R L2-PE = 1,0 M Ω
22	Isolationswiderstand X2	R L1-PE = 510 k Ω
23	Funktionsfehler an Steckdose X2	Leitungsvertauschung L1-N
24	Funktionsfehler an Steckdose X2	Leitungsvertauschung L2-N
25	Funktionsfehler an Steckdose X2	Leitungsvertauschung L3-N

Anschlusswerte

Netzanschluss 4 mm-Sicherheitsbuchsen

Nennspannung 3 x 230 V/400 V Frequenz 50/60 Hz

Schutzklasse I

Stromkreise

Lampenstromkreis E1 Ausschaltung, inkl. Leuchtmittel

Steckdosenstromkreis X1 CEE-Steckdose X2

F1 Leitungsschutzschalter B10 F2 FI/LS-Kombination $I_{\Delta N} = 10$ mA F3.0 Fehlerstromschutzschalter

TYP B, $I_{\Delta N} = 30 \text{ mA}$

F3.1 ... 3.3 Leitungsschutzschalter B16

Mechanischer Aufbau

Abmessungen 297 x 456 x 80 mm

Gewicht ca. 3,2 kg

Ein-/Ausgänge 4 mm-Sicherheitsbuchsen

Umgebungsbedingungen

Umgebungstemperatur max. +35 °C

Relative Luftfeuchte max. 60 %, Kondensation ist ausgeschlossen

Lieferumfang

Installationsboard

Bedienungsanleitung

Prüfvorschrift

Kurzschlussbrücken

Schlüssel für Fehlersimulator

Bestellangaben

Bezeichnung	Тур	Artikelnummer
Installationsboard	PROFISIM 2	M560B
Koffer für PROFiSIM 1/2	PROFiSIM-Case	Z560A

PROFiSIM-Case mit PROFiSIM 2

Erstellt in Deutschland • Änderungen vorbehalten • Eine PDF-Version finden Sie im Internet

Telefon +49 911 8602-111 Telefax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com