

3-348-817-01 15/6.15

Anwendung

Prüfen der elektrischen Sicherheit elektrischer Betriebsmittel: nach DIN VDE 0701-0702: 2008 durch Messung von

- Schutzleiterwiderstand
- Isolationswiderstand
- Schutzleiterstrom Methode Ersatz-Ableitstrom
 - Methode Differenzstrom
- Berührungsstrom (Spannungsfreiheit durch Strommessung)

sowie durch Messung der Betriebsgrößen

- Netzspannung
- Verbraucherstrom

Merkmale

Komfortabler Anschluss

Das Prüfgerät ist zum Prüfen und Messen von instand gesetzten oder geänderten Geräten vorgesehen. Der Prüfling wird hierzu über die Prüfsteckdose an das Prüfgerät angeschlossen. Die Sicherheits-Schnellspannbuchsen sind parallel zur Prüfsteckdose geschaltet und ermöglichen ein Messen an Prüflingen ohne Schutzkontaktstecker bzw. an fest angeschlossenen Prüflingen. Zur Prüfung der Spannungsfreiheit berührbarer leitfähiger Teile und zum Messen von Verbraucherströmen wird der Prüfling an die Netzsteckdose des Prüfgerätes angeschlossen.

Kontaktfläche für Fingerkontakt

Über eine Kontaktfläche für Fingerkontakt kann das Schutzleiterpotenzial überprüft werden. Die Signallampe PE leuchtet, wenn zwischen der berührten Kontaktfläche und dem Schutzkontakt des Netzanschlusssteckers eine Potenzialdifferenz von mehr als 100 V besteht.

Robuster Geräteaufbau

Das handliche Gerät besitzt ein kompaktes Kunststoffgehäuse mit einklappbarem Tragegriff. Netzkabel und Messleitung sind fest angeschlossen. Das Netzkabel kann auf einer Vorrichtung auf der Gehäuserückseite aufgewickelt und die Messleitung in einem integrierten Kabelfach untergebracht werden. Mit dem Drehschalter wird die Messgröße gewählt.

Sicherheitseinrichtungen

Ein Überlastschutz (thermisch) bis 253 V in allen Bereichen (ausgenommen 16 A). Das Prüfgerät ist nach Beseitigung der Überlast sofort wieder betriebsbereit. Die Übertemperatur wird auf der LCD angezeigt. Die Signallampe PE signalisiert, ob Spannung am Netzschutzleiter anliegt.

Anzeigefunktionen

Alle Messwerte werden auf einer großen Digitalanzeige gut ablesbar ausgegeben und darüber hinaus Grenzwertüberschreitungen optisch und zum Teil akustisch signalisiert.

Angewendete Vorschriften und Normen

IEC 61 010-1 DIN EN 61 010-1 VDE 0411-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte – Allgemeine Anforderungen
DIN VDE 0404	Geräte zur sicherheitstechnischen Prüfung von elektrischen Betriebsmitteln
DIN VDE 0470 Teil 1	Prüfgeräte und Prüfverfahren – Schutzarten durch Gehäuse (IP-Code)
DIN EN 61 326 VDE 0843 Teil 20	Elektrische Betriebsmittel für Leittechnik und Laboreinsatz – EMV-Anforderungen

Vorschriften und Normen für die Anwendung des Prüfgeräts

DIN VDE 0701-0702	Prüfung nach Instandsetzung, Änderung elektrischer Geräte – Wiederholungsprüfung elektrischer Geräte – Allgemeine Anforderung für die elektrische Sicherheit
DGUV Vorschrift 3 (bisher BGV A3)	Vorschrift 3 der Deutschen Gesetzlichen Unfallversicherung – Unfallverhütungsvorschrift "Elektrische Anlagen und Betriebsmittel"

Technische Kennwerte

Messgröße	Messbereich	Auf- lösung	U _{LEERLAUF}	R _i	I _K	I _N
Schutzleiter- widerstand	0 19,99 Ω	10 mΩ	< 20 V –	_		> 200 mA
Isolations- widerstand	0,0519,99 MΩ	10 kΩ	600 V –	ca. 100 k Ω	<10 mA	> 1 mA
Ersatz- Ableitstrom	0 19,99 mA ~	10 μΑ	28 V ~	2 kΩ	<20 mA	_
Nachweis der Spannungsfreiheit durch Strommes- sung (Berühr-/Ableit- strom)	0 1,999 mA ~	1 μΑ		2 kΩ		
Differenzstrom	0,01 19,99 mA~	10 μΑ				

Betriebsmessungen

Messgröße	Messbereich	Auflösung
Netzspannung	207 253 V ~	1 V
Verbraucherstrom über die Netzdose	0 16,00 A ~	10 mA

Überlastbarkeit

Verbraucherstrom übe Differenzstrom	r die Netzdose,	19 A, 5 min.
alle anderen Messgröß	Ben	250 V dauernd

Eigenabweichung und Betriebsmessabweichung

Messgröße	Eigenunsicherheit	Betriebsmessunsicherheit
Schutzleiterwiderstand	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)
Isolationswiderstand 0 19,99 MΩ	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)
Ersatz-Ableitstrom	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)
Nachweis der Spannungsfreiheit durch Berührungsstrommessung	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)
Differenzstrom	± (4% v.M. + 5 D)	± (10 % v.M. + 5 D)
Netzspannung	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)
Verbraucherstrom über die Netzdose	± (2,5% v.M. + 2 D)	± (10 % v.M. + 5 D)

Einflussgrößen und Einflusseffekte

Einflussgröße/ Einflussbereich	Bezeichnung gemäß DIN VDE 0404	Einflusseffekte ± % v. Messwert
Veränderung der Lage	E1	_
Veränderung der Versorgungs- spannung der Prüfeinrichtung	E2	2,5
Temperaturschwankung		angegebene Einflusseffekte gelten pro 10 K Temperaturänderung:
0 21 °C und 25 40 °C	E3	1 bei Schutzleiterwiderstand
		0,5 alle anderen Messbereiche
Höhe des Prüflingsstroms	E4	2,5
niederfrequente Magnetfelder	E5	2,5
Impedanz des Prüflings	E6	2,5
Kapazität bei Isolationsmessungen	E7	2,5
Kurvenform des gemessenen Stroms		
49 51 Hz	E8	2 bei kapazitiver Last (bei Ersatz-Ableitstrom)
45 100 Hz		1 (bei Berührstrom)
		2,5 alle anderen Messbereiche

Referenzbedingungen

Frequenz der

Messgröße 50 Hz ±0,2%

Kurvenform der

Messgröße Sinus (Abweichung zwischen Effektiv- und

Gleichrichtwert ±0,5%)

Umgebungsbedingungen

Betriebstemperaturen –10 ... + 55 °C Lagertemperaturen –25 ... + 70 °C

Luftfeuchte max. 75%, Betauung ist auszuschließen

Höhe über NN bis zu 2000 m

Stromversorgung

Netzspannung 230 V/50 Hz Durchgangsleistung max. 3700 VA,

abhängig von der Last an der Netzdose

Elektrische Sicherheit

Schutzklasse II Netznennspannung 230

Prüfspannung Netz + PE (Netz) + 2 mA-Buchse zur Prü-

fung auf Spannungsfreiheit gegen Prüfdose, Anschlussbuchsen für Außen- und Schutzleiter sowie Greifklemme: 3 kV~ Netz gegen PE

(Netz) + 2 mA-Buchse: 1,5 kV~

Messkategorie II Verschmutzungsgrad 2

Sicherheitsabschaltung bei Überhitzung des Prüfgeräts

Anzeige- und Signaleinrichtungen

LCD

Anzeigebereich 0 ... 1999 Digit, 3½ Stellen
Ziffernhöhe 17 mm und Sonderzeichen
Überlauf signalisiert durch Anzeige von "OL"
Übertemperatur bei länger anstehendem Kurzschluss:

Segmente " $R_{\rm ISO}$ " und " $M\Omega$ " blinken

Beim Anzeigetext behalten wir uns technische Änderungen vor.

Signallampe PE

Diese signalisiert, ob Spannung am Netzschutzleiter anliegt.

Folgende Grenzwerte werden signalisiert

	Fehler-	Signalisierung der Grenzwertüberschreitung am Prüfgerät			
Messung	bedingung nach Norm	Dauerleuchten der roten Fehlerlampe	Einblenden der Grenzwerte	Dauersummer (Beeper)	
Schutzleiter-	$R_{SL} > 0.3 \Omega^{-1}$	•	> 0,3 Q	_	
widerstand	$R_{SL} > 1 \Omega^{2}$	•	>1 Ω	•	
	Heizung $^{3)}$: $R_{ISO} < 0.3 M\Omega$	•	$<$ 0,5 M Ω	•	
Isolations- widerstand	$\begin{array}{c} \text{SKI:} \\ \text{R}_{\text{ISO}} < \text{1,0 M}\Omega \end{array}$	•	$<$ 2,0 M Ω	_	
	SKII: $R_{ISO} < 2.0 \text{ M}\Omega$	_	$<$ 2,0 M Ω	_	
Ersatz-	$I_{EA} > 3,5 \text{ mA}$	•	_	_	
ableitstrom		•	> 7,0 mA ⁴⁾	•	
Ableit-/Berühr-	$I_A > 0.25 \text{ mA}$	•	> 0,25 mA	_	
strom (Nachweis der Spannungs- freiheit)	$I_A > 0.5 \text{ mA}$	•	> 0,5 mA	•	
Differenzstrom	$I_{Diff} \ge 3.5 \text{ mA}$	•	_	•	

 $^{^{1)}}$ Widerstand zwischen Gehäuse und Netzstecker bei Anschlussleitungen bis 5 m Länge $^{2)}$ bei Verlängerungsleitungen je weitere 7,5 m zusätzlich 0,1 $\Omega,$ maximal jedoch 1 Ω

3) für Geräte der Schutzklasse I mit eingeschalteten Heizelementen

Mechanischer Aufbau

Abmessungen B x H x T: 190 mm x 140 mm x 95 mm

Gewicht 1,3 kg

Schutzart Gehäuse IP 40, Anschlüsse IP 20

Tabellenauszug zur Bedeutung des IP-Codes

IP XY (1. Ziffer X)	Schutz gegen Eindringen von festen Fremdkörpern	IP XY (2. Ziffer Y)	Schutz gegen Eindringen von Wasser
2	≥ 12,5 mm Ø	0	nicht geschützt
4	≥ 1,0 mm Ø	0	nicht geschützt

Elektromagnetische Verträglichkeit EMV

Produktnorm EN 61326-1:2006

Störaussendung		Klasse
EN 55022		Α
Störfestigkeit	Prüfwert	Leistungsmerkmal
EN 61000-4-2	Kontakt/Luft – 4 kV/8 kV	В
EN 61000-4-3	10 V/m	В
EN 61000-4-4	Netzanschluss – 2 kV	В
EN 61000-4-5	Netzanschluss – 1 kV	Α
EN 61000-4-6	Netzanschluss – 3 V	В
EN 61000-4-11	0,5 Periode / 100%	A

Lieferumfang

- 1 Prüfgerät
 - inklusive Netzanschlusskabel mit Schutzkontaktstecker und einem fest montierten Sondenkabel mit Prüfspitze sowie einer aufsteckbaren Krokodilklemme
- 1 Kabelset KS17-4 für Isolations- und Berührungsstrommessung
- 1 Bedienungsanleitung
- 1 Werkskalibrierschein

GMC-I Messtechnik GmbH

⁽wenn Heizleistung > 3 kW und $R_{\rm ISO}$ < 0,3 M Ω : Ableitstrommessung erforderlich) dieser Grenzwert bezieht sich auf allpolige Schalter (dies entspricht einer Verdoppelung des Grenzwertes bzw. Halbierung des tatsächlichen Messstromes)

Zubehör

Bürstensonde

Die Bürstensonde ist geeignet zur Kontaktierung berührbarer leitfähiger Teile, die im Betrieb rotieren, vibrieren etc., z. B. Bohrfutter, Schwingschleifer, Meißelaufnahmen. Hierzu muss die Bürste auf die Prüf-

spitze der Sonde aufgesteckt werden.

Kabelset KS13

Das Kabelset KS13 besteht aus einer Kupplungssteckdose mit 3 fest angeschlossenen Zuleitungen, 3 Messleitungen, 3 aufsteckbaren Abgreifklemmen und 2 aufsteckbaren Prüfspitzen. Damit können Sie Prüfgerät und Prüfling

auch dann anschließen, wenn keine Schutzkontaktsteckdose für den Netzanschluss bzw. kein Schutzkontaktstecker am Prüfling vorhanden ist.

Bestellangaben

Beschreibung	Тур	Artikelnummer
Grundgeräte		
Gerät zur Prüfung der elektrischen Sicherheit elektrischer Betriebs- mittel nach DIN VDE 0701-0702	METRATESTER 5+	M700D
Prüfgerät wie METRATESTER 5+ als Einbauversion	METRATESTER®5-F-E	M700T
Zubehör		
Sonde zur Messung des Schutzleiterwiderstands, z. B. an rotierenden Prüflingen	Bürstensonde	Z745G
Kabelset für den Anschluss an das Netz ohne Schutzkontaktsteckdose und zum Anschluss von Prüflingen, bestehend aus Kupplungssteck- dose mit 3 fest angeschlossenen Zuleitungen, 3 Messleitungen, 3 aufsteckbaren Abgreifklemmen, 2 aufsteckbaren Prüfspitzen	KS13	GTY3624065P01

Weitere Informationen zum Zubehör finden Sie:

- im Katalog Mess- und Prüftechnik
- im Internet unter www.gossenmetrawatt.com