

LEISTUNGSERKLÄRUNG

DoP 0195

für fischer Injektionssystem FIS VL (Injektionsdübel für den Einsatz in Mauerwerk)

Eindeutiger Kenncode des Produkttyps:
 DoP 0195

2. <u>Verwendungszweck(e):</u> Nachträgliche Befestigung in Mauerwerk.

Siehe Anhang, insbesondere die Anhänge B1- B11

3. Hersteller: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. <u>Bevollmächtigter:</u>

5. AVCP - System/e:

6. Europäisches Bewertungsdokument: EAD 330076-00-0604, Edition 11/ 2017

Europäische Technische Bewertung: ETA-15/0263; 2020-07-07

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik
Notifizierte Stelle(n): 1343 MPA Darmstadt / 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Werte für den Widerstand: Abminderungsfaktor:

Anhang C27

Charakteristischer Widerstand eines Einzeldübels bei Zugbelastung:

Anhänge B3, C1, C3, C5, C7, C9, C11, C13, C15, C17, C19, C21, C23, C25, C26

Charakteristischer Widerstand einer Dübelgruppe bei Zugbelastung:

Anhang B11

Charakteristischer Widerstand eines Einzeldübels bei Querbelastung:

Anhänge B3, C2, C3, C5, C7, C9, C11, C13, C15, C17, C19, C21, C23, C26

Charakteristischer Widerstand einer Dübelgruppe bei Querbelastung ohne und mit Randeinfluss:

Anhänge B1

Charakteristischer Rand- und Achsabstand:

Anhänge B11, C4, C6, C8, C10, C12, C14, C16, C18, C20, C22, C24, C25

Minimaler Rand- und Achsabstand:

Anhänge B11, C4, C6, C8, C10, C12, C14, C16, C18, C20, C22, C24, C25

Gruppenfaktor Zug- und Querbelastung:

Anhänge C4, C6, C8, C10, C12, C14, C16, C18, C20, C22, C24, C25

Minimale Bauteildicke:

Anhang B2

Dauerhaftigkeit: Anhänge A5, B2

Verschiebungen: Anhang C27

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen NPA

Stoffen

Fischer DATA DOP_ECs_V24.xlsm 1/2

DF

2/2

8. <u>Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:</u>

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Thilo Pregartner, Dr.-Ing.

Tumlingen, 2020-08-04

Peter Schillinger, Dipl.-Ing.

i.V. P. St

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS VL für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit fischer Injektionsmörtel FIS VL, FIS VL Low Speed und FIS VL High Speed, einer Injektions-Ankerhülse und einer Ankerstange mit Sechskantmutter und Unterlegscheibe oder einer Innengewinde-Ankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund zwischen Stahlteil. Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Widerstand	Siehe Anhang C1 bis C 26
Verschiebungen	Siehe Anhang C 27
Dauerhaftigkeit	Siehe Anhang B 2

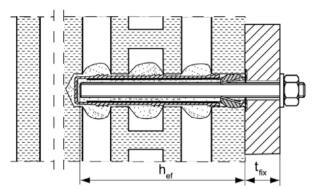
3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

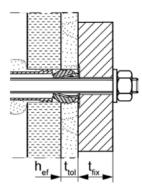
3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD 330076-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

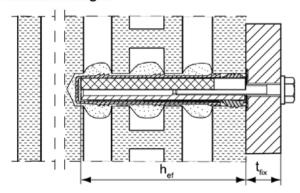
Ankerstangen mit Injektions-Ankerhülse FIS H K; Montage in Loch- und Vollsteinen

Vorsteckmontage:

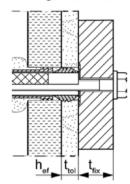
Montage mit Putzüberbrückung

Größe der Injektions-Ankerhülse: FIS H 12x85 K

FIS H 16x85 K


FIS H 16x130 K

FIS H 20x130 K


FIS H 20x85 K FIS H 20x200 K

Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K; Montage in Loch- und Vollsteinen

Vorsteckmontage:

Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

h_{ef} = Effektive Verankerungstiefe

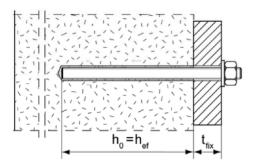
t_{tol} = Dicke der nichttragenden Schicht (z.B. Putz)

t_{fix} = Dicke des Anbauteils

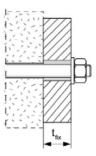
fischer Injektionssystem FIS VL für Mauerwerk

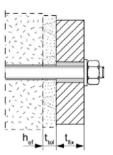
Produktbeschreibung

Einbauzustand Teil 1, Montage in Loch- und Vollsteinen; Ankerstange und Innengewindeanker mit Injektions-Ankerhülse

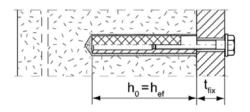

Anhang A 1

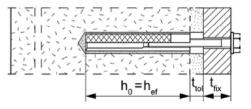
Appendix 2/44


Einbauzustände Teil 2


Ankerstangen ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton

Vorsteckmontage:


Durchsteckmontage: Ringspalt mit Mörtel verfüllt



Montage mit Putzüberbrückung

Innengewindeanker FIS E ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton Vorsteckmontage:

Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

t_{tol} = Dicke der nichttragenden Schicht (z.B. Putz)

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS VL für Mauerwerk

Produktbeschreibung

Einbauzustand Teil 2, Montage in Vollsteinen und Porenbeton. Ankerstange und Innengewindeanker ohne Injektions-Ankerhülse Anhang A 2

Appendix 3/44

Übersicht Systemkomponenten Teil 1 Mörtelkartusche (Shuttlekartusche) mit Verschlusskappe Größen: 350 ml, 360 ml, 390 ml, 550 ml, 825 ml Aufdruck: fischer FIS VL oder FIS VL Low Speed oder FIS VL High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Mörtelkartusche (Koaxialkartusche) mit Verschlusskappe Größen: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: fischer FIS VL oder FIS VL Low Speed oder FIS VL High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Gefahrenhinweise, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Statikmischer MR Plus mit Verlängerung Statikmischer Verlängerung Reinigungsbürste BS Ausbläser ABG oder ABP Abbildungen nicht maßstäblich fischer Injektionssystem FIS VL für Mauerwerk Anhang A 3 Produktbeschreibung Übersicht Systemkomponenten Teil 1: Kartusche / Statikmischer / Reinigungszubehör

Appendix 4/44

Übers	sicht Systemkomponenten Te	eil 2		
fische	r Ankerstange			
2		Größen:	M8, M10, M12	
Innenç	gewindeanker FIS E			
5		Größen:	11x85 M6 / M8 15x85 M10 / M12	
Injekti	ons-Ankerhülse FIS H K			
7		Größen:	FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K	
7		Größen:	FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K	
Unterl	egscheibe			
3				
Sechs	kantmutter			
4				
				Abbildungen nicht maßstäblic
fisch	er Injektionssystem FIS VL für I			<u> </u>
	uktbeschreibung			Anhang A 4
Übers	icht Systemkomponenten Teil 2: Stah	nIteile, Injektions-A	Ankerhülse	Appendix 5/ 44

Tabe	Tabelle A5.1: Werkstoffe							
Teil	Bezeichnung	Material						
1	Mörtelkartusche		Mörtel, Härter, Füllstoffe					
		Stahl	Nichtrostender Stahl R	Hochkorrosionsbe- ständiger Stahl HCR				
		verzinkt	gemäß EN 10088-1:2014 der Korrosionswider- standsklasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:2014 der Korrosionswider- standsklasse CRC V nach EN 1993-1-4:2015				
2	Ankerstange	Festigkeitsklasse 4.8; 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt \geq 5 μ m, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004 f _{uk} \leq 1000 N/mm ² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 14462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ Bruchdehnung}$	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ² $A_5 >$ 8% Bruchdehnung				
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Innengewindeanker FIS E	Festigkeitsklasse 5.8 EN 10277-1:2008-06 verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
6	Handelsübliche Schraube oder Gewindestange für Innengewindeanker FIS E	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
7	Injektions-Ankerhülse		PP / PE					

fischer Injektionssystem FIS VL für Mauerwerk	
Produktbeschreibung Werkstoffe	Anhang A 5 Appendix 6/ 44

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien

		fischer Injektionssys	stem FIS VL für Mauerwerk			
Hamm	rstellung durch nerbohren	alle Steine				
Drehga	rstellung durch angbohren	all	e Steine			
	d quasi-statische im Mauerwerk	alle Steine				
Nutzungs- kategorie	Trockenes oder nasses Mauerwerk	alle Steine				
Montageart	Vorsteck- montage	Ankerstange oder Innengewindeanker (in Vollstein und Porenbeton)	Injektions-Ankerhülse mit Ankerstange oder Innengewindeanker (in Loch- und Vollsteinen) Größen: FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x130 K FIS H 20x200 K			
	Durchsteck- montage	Ankerstange (in Vollstein und Porenbeton)				
	Kategorie d/d					
Einbau- bedingungen	Kategorie w/d	all	e Steine			
boamgangen	Kategorie w/w					
Einbaurichtung		`	age nach unten,sowie Überkopfmontage)			
Einbautemperatu	ır	$T_{i,min} = 0$ °C bis $T_{i,max} = +40$ °C				
Gebrauchs- temperaturbereic	Temperatur- he bereich Tb	-40 °C bis +80 °C (maximale Kurzzeittemperatur +80 °C; maximale Langzeittemperatur +50 °C)				

fischer Injektionssystem FIS VL für Mauerwerk
Verwendungszweck Spezifizierung (Teil1)

Spezifizierung des Verwendungszweck (Teil 2)

Beanspruchung der Verankerung:

Statische oder quasi-statische Lasten

Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungskategorie b) und Mauerwerk aus Porenbeton (Nutzungskategorie d), entsprechend Anhang B 10
- Mauerwerk aus Hohlblöcken und Lochsteinen (Nutzungskategorie c), entsprechend Anhang B 10
- Für die minimale Bauteildicke gilt hef+30mm
- Mörtel mindestens Druckfestigkeitsklasse M2,5 gemäß EN 998-2:2010
- Für andere Steine in Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach EOTA Technical Report TR 053 unter Berücksichtigung des β-Faktors nach Anhang C 27, Tabelle C27.1 ermittelt werden.

Hinweis (gilt nur für Vollsteine und Porenbeton):

Die charakteristischen Tragfähigkeiten gelten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.

Temperaturbereiche:

• **Tb:** von - 40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)

Anwendungsbedingungen (Umweltbedingungen):

- X1: Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- **X2:** Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- X3: Bauteile im Freien oder in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Hinweis: Besonders aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

fischer Injektionssystem FIS VL für Mauerwerk

Spezifizierung des Verwendungszweck (Teil 2 fortgesetzt)

Bemessung:

Die Bemessung der Verankerung erfolgt in Übereinstimmung mit EOTA Technical Report TR 054,
 Bemessungs-methode A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.

Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:

 $N_{Rk} = N_{Rk,b} = N_{Rk,p}$

 $V_{Rk} = V_{Rk,b} = V_{Rk,c}$

Für die Berechnung für das Herausziehen eines Steines unter Zuglast **N**_{Rk,pb} oder das Herausdrücken eines Steines unter Querlast **V**_{Rk,pb} siehe EOTA Technical Report TR 054.

N_{Rk,s}, V_{Rk,s} und M⁰_{Rk,s} siehe Anhang C1-C3

Faktoren für Baustellenversuche und Verschiebungen siehe Anhang C27

 Unter Berücksichtigung des im Bereich der Verankerung vorhandenen Mauerwerks, den zu verankernden Lasten sowie der Weiterleitung dieser Lasten im Mauerwerk sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.

Einbau:

- Kategorie d/d: Installation und Verwendung in trockenem Mauerwerk
- Kategorie w/w: Installation und Verwendung in trockenem und nassem Mauerwerk
- · Kategorie w/d: Installation in nassem Mauerwerk und Verwendung in trockenem Mauerwerk
- Bohrlocherstellung siehe Anhang C (Bohrverfahren)
- Im Fall von Fehlbohrungen sind diese zu vermörteln.
- Überbrückung von nichttragenden Schichten (z.B. Putz) bei Lochsteinmauerwerk siehe Anhang B 6,
 Tabelle B6.1
- Einbau des Dübels durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Befestigungsschrauben oder Ankerstangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen für den fischer Innengewindeanker FIS E entsprechen.
- · Aushärtezeiten siehe Anhang B 7, Tabelle B7.2
- Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

Materialabmessungen und mechanische Eigenschaften der Metallteile entsprechend den Angaben aus Anhang A 5, Tabelle A5.1.

Bestätigung der Material- und mechanischen Eigenschaften der Metallteile durch ein Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.

Markierung der Ankerstange mit der vorgesehenen Verankerungstiefe. Dies darf durch den Hersteller oder durch eine Person auf der Baustelle erfolgen.

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

Spezifizierung (Teil 2 fortgesetzt)

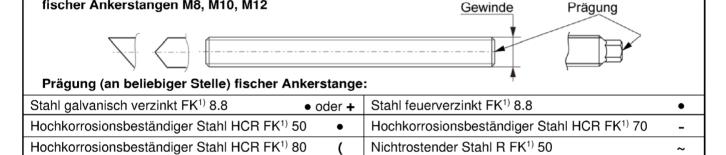

Anhang B 3

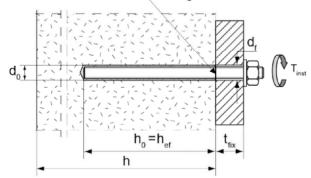
Tabelle B4.1: Montagekennwerte für Ankerstangen in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse

Ankerstange	Gewinde	M8	M10	M12			
Bohrernenndurchmesser	d₀ [mm]	10	12	14			
Effektive Verankerungstiefe	$h_{0,min}=h_{ef,min}$ [mm]		100				
h _{ef} 1) in Porenbeton	h _{0,max} =h _{ef,max} [mm]	200					
Effektive Verankerungstiefe	h _{ef,min} [mm]	50					
$h_{ef}^{1)}$ in Vollziegel (Bohrlochtiefe $h_0 = h_{ef}$)	h _{ef,max} [mm]	h-30, ≤ 200					
Durchgangsloch	Vorsteck d _f ≤[mm]	9 12 14					
im Anbauteil	Durchsteck d _f ≤[mm]	n] 11 14		16			
Durchmesser der Stahlbürste d _b ≥ [mm]] Siehe Tabelle B7.1					
Maximales Montagedrehmor	ment T _{inst} [Nm]		Siehe Steinkennwerte	9			

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ ist möglich.

fischer Ankerstangen M8, M10, M12

*


Alternativ: Farbmarkierung nach DIN 976-1:2016

1) FK = Festigkeitsklasse

Einbauzustand:

Nichtrostender Stahl R FK1) 80

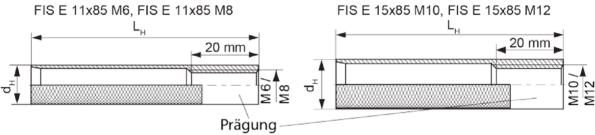
Setztiefenmarkierung

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

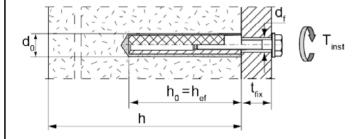
Montagekennwerte für Ankerstangen ohne Injektions-Ankerhülse


Anhang B 4

Appendix 10/44

Tabelle B5.1: Montagekennwerte für Innengewindeanker FIS E in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse

Innengewindeanker FIS E		11x85 M6	11x85 M8	15x85 M10	15x85 M12	
Ankerdurchmesser	d⊦ [mm]	1	1	1	5	
Bohrernenndurchmesser	d₀ [mm]	1	4	1	8	
Ankerlänge	L _H [mm]	85				
Effektive Verankerungstiefe	$h_0 = h_{ef}[mm]$	85				
Durchmesser der Stahlbürste	d _b ≥[mm]	siehe Tabelle B7.1				
Maximales Montagedrehmoment	T _{inst} [Nm]		siehe Stei	nkennwerte		
Durchgangsloch im Anbauteil	d _f [mm]	7	9	12	14	
Finanhrauhtinfo	I _{E,min} [mm]	6 8		10	12	
Einschraubtiefe	I _{E,max} [mm]	60				


fischer Innengewindeanker FIS E

Prägung:

Größe, z.B. M8, nichtrostender Stahl: R, z.B. M8 R, hochkorrosionsbeständiger Stahl: HCR, z.B. M8 HCR

Einbauzustand:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

Montagekennwerte für Innengewindeanker FIS E ohne Injektions-Ankerhülse

Anhang B 5

Appendix 11/44

Tabelle B6.1: Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülsen (Vorsteckmontage)

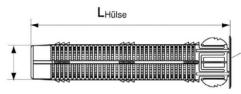
Injektions-Ankerhülse FIS H K		12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
$ \begin{array}{c} Bohrernenndurchmesser \\ d_0 = D_{H\"{u}lse,nom} \end{array} \qquad \qquad d_0 [mm] $		12	16		20		
Bohrlochtiefe	h₀ [mm]	90	90	135	90	135	205
Effective Venezalezman actions	h _{ef,min} [mm]	65	85	110	85	110	180
Effektive Verankerungstiefe	h _{ef,max} [mm]	85	85	130	85	130	200
Ankergröße [-]		M8	M8 ur	nd M10		M12	
Größe des Innengewindeankers	FIS E		11x85		15x85		
Durchmesser der Stahlbürste ¹⁾	d₀≥[mm]	nm] siehe Tabelle B7.1					
Maximales Montagedrehmoment	T _{inst} [Nm]	siehe Steinkennwerte					

¹⁾ Nur für Vollsteine und massive Bereiche in Lochsteinen.

Injektions-Ankerhülsen

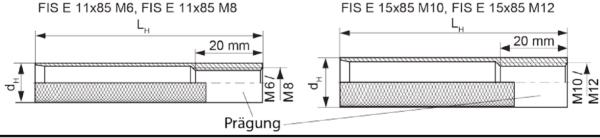
FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

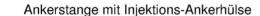
FIS H 20x85 K; FIS H 20x130 K; FIS H 20x200 K

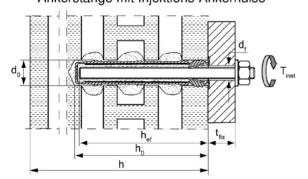

Markierung:

Größe $D_{\text{H\"{u}lse},nom}$ x $L_{\text{H\"{u}lse}}$

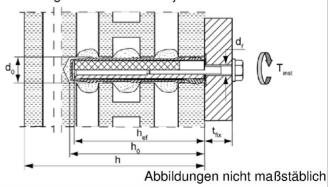
(z.B.: 16x85)






Markierung

fischer Innengewindeanker FIS E



Einbauzustände:

Innengewindeanker mit Injektions-Ankerhülse

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse (Vorsteckmontage)

Anhang B 6

Appendix 12/44

²⁾ Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei Reduzierung der effektiven Verankerungstiefe h_{ef,min} müssen die Werte der nächst kürzeren Injektions-Ankerhülse des selben Durchmessers verwendet werden. Der kleinere charakteristische Wert ist maßgebend

Tabelle B7.1: Kennwerte der Reinigungsbürste BS (Stahlbürste mit Stahlborsten)								
Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser								
Bohrdurchmesser	d ₀ [mm]	10	12	14	16	18	20	
Bürstendurchmesser	d₀ [mm]	11	14	16	20	20	25	

Nur für Vollsteine und Porenbeton

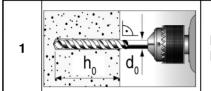
Tabelle B7.2: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (Die Temperatur im Mauerwerk darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Temperatur im	Maxim	ale Verarbeitui t _{work}	ngszeit	Minimale Aushärtezeit ¹⁾ t _{cure}				
Verankerungsgrund [°C]	FIS VL High Speed 3)	FIS VL 2) FIS VL FIS VL Low Speed 2) High Speed 3) FIS		FIS VL 2)	FIS VL Low Speed ²⁾			
> 0 bis 5	5 min	13 min	20 min	90 min	3 h	6 h		
> 5 bis 10	3 min	9 min	20 min	45 min	90 min	3 h		
> 10 bis 20	1 min	5 min	10 min	30 min	60 min	2 h		
> 20 bis 30	-	4 min	6 min	-	45 min	60 min		
> 30 bis 40	-	2 min	4 min	-	35 min	30 min		

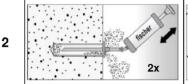
¹⁾ In nassen Steinen muss die Aushärtezeit verdoppelt werden

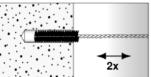
Abbildungen nicht maßstäblich

fischer Injektionssystem FIS VL für Mauerwerk	
Verwendungszweck Reinigungsbürste (Stahlbürste) Maximale Verarbeitungszeiten und minimale Aushärtezeiten	

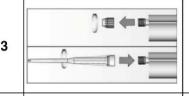

Anhang B 7

²⁾ Minimale Kartuschentemperatur +5°C

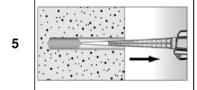

³⁾ Minimale Kartuschentemperatur ±0°C

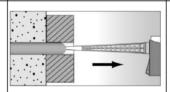

Montageanleitung Teil 1

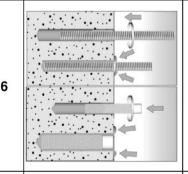
Montage in Vollsteinen und Porenbeton (ohne Injektions-Ankerhülsen)


Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines) Bohrlochtiefe **h**₀ und Bohrdurchmesser **d**₀ siehe **Tabelle B4.1; B5.1**

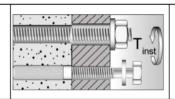
Bohrloch zweimal ausblasen, zweimal ausbürsten, und nochmal zweimal ausblasen.


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel verfüllen ¹⁾. Lufteinschlüsse vermeiden.


Bei Durchsteckmontage (nicht FIS E) den Ringspalt mit Mörtel verfüllen.

Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen einschieben. Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B7.2**

Montage des Anbauteils, T_{inst} siehe Steinkennwerte

1) Genaue Füllmengen siehe Montageanleitung des Herstellers.

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

7

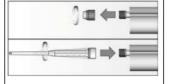
Montageanleitung (ohne Injektions-Ankerhülsen) Teil 1

Anhang B 8

Appendix 14/44

Montageanweisung Teil 2

Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Vorsteckmontage)

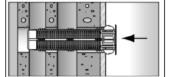

1	

Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines). Bohrlochtiefe **h**₀ und Bohrdurchmesser **d**₀

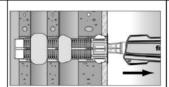
siehe Tabelle B6.1

Bei der Montage von Injektions-Ankerhülsen in Vollsteinen oder massiven Bereichen von Lochsteinen ist das Bohrloch durch Ausblasen und Bürsten zu reinigen.

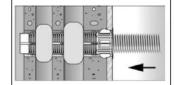
Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).



Kartusche in ein geeignetes Auspressgerät legen.

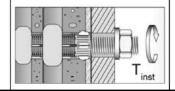


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.



Die Injektions-Ankerhülse bündig mit der Oberfläche des Mauerwerks oder Putzes in das Bohrloch stecken.

Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen¹⁾.



Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen bis zum Erreichen der Setztiefenmarkierung (Ankerstange) bzw. oberflächenbündig (Innengewindeanker) einschieben.

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B7.2**

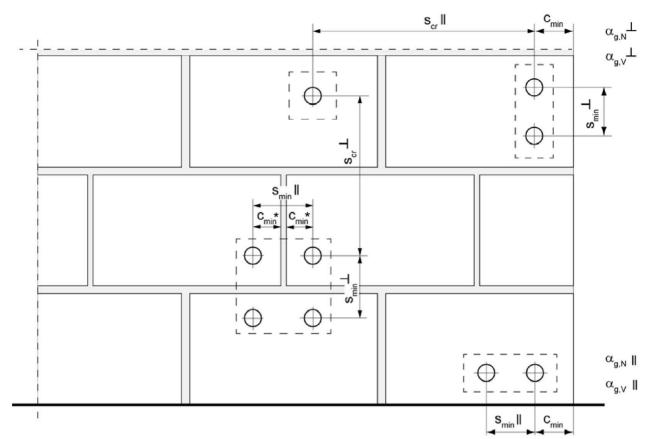
Montage des Anbauteils. T_{inst} siehe Steinkennwerte

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

Montageanleitung (mit Injektions-Ankerhülsen) Teil 2

Anhang B 9


Appendix 15/44

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers.

Tabelle B10.1: Übersicht der geregelten Steine										
Steinart / Bezeichnung	Steir	nabmessungen [mm]	Druckfestigkeit f _b [N/mm²]	Dichte ρ [kg/dm³]	Anhang					
		Vo	ollziegel Mz							
Vollziegel Mz	NF	240x115x71	≥ 12 oder 20	≥ 1,8	C 4 – C 7					
	Kalksandvollstein KS / Kalksandlochstein KSL									
Kalksandvollstein KS	NF	240x115x71	≥ 12 oder 20	≥ 1,8	C8-C9					
Kaiksanovonstein K5		240x115x113	≥ 10 oder 20	≥ 1,8	C 10 – C 11					
Kalksandlochstein KSL	3DF	240x175x113	≥ 12 oder 20	≥ 1,4	C 12 – C 13					
		Hochl	ochziegel HLz							
	240x175x113		≥ 10	≥ 0,9	C 14 – C 15					
	2DF	240x115x113	≥ 20	≥ 1,4	C 16 – C 17					
Hochlochziegel HLz		500x175x237	≥ 10	≥ 1,0	C 18 – C 19					
		370x240x237	≥ 10	≥ 1,0	0 10 - 0 19					
		370x250x245	≥ 8	≥ 0,6	C 20 – C 21					
		Hohlblock a	aus Leichtbeton Hbl							
Hohlblock aus Leichtbeton Hbl		362x240x240	≥ 4	≥ 1,0	C 22 – C 23					
		P	orenbeton							
Porenbeton PP2 / AAC			≥ 2	≥ 0,35						
Porenbeton PP4 / AAC		500x300x250	≥ 4	≥ 0,5	C 24 – C 26					
Porenbeton PP6 / AAC			≥ 6	≥ 0,65						

tischer injektionssys	tem FIS VL tur	Mauerwerk

* Nur wenn die Stoßfugen nicht vollständig vermörtelt sind

s_{min} II = Minimaler Achsabstand parallel zur Lagerfuge

 s_{min}^{\perp} = Minimaler Achsabstand senkrecht zur Lagerfuge

s_{cr} II = Charakteristischer Achsabstand parallel zur Lagerfuge

 s_{cr}^{\perp} = Charakteristischer Achsabstand senkrecht zur Lagerfuge

c_{cr} = c_{min} = Randabstand

α_{q,N} II = Gruppenfaktor bei Zuglast, Dübelanordnung parallel zur Lagerfuge

α_{g,V} II = Gruppenfaktor bei Querlast, Dübelanordnung parallel zur Lagerfuge

 $\alpha_{a,N}^{\perp}$ = Gruppenfaktor bei Zuglast, Dübelanordnung senkrecht zur Lagerfuge

 $\alpha_{g,V}^{\perp}$ = Gruppenfaktor bei Querlast, Dübelanordnung senkrecht zur Lagerfuge

Für s \geq s_{cr} $\alpha_g = 2$

Für s_{min}≤ s < s_{cr} α_g entsprechend Montagekennwerte der Steine

 $N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$; $V^{g}_{Rk} = \alpha_{g,V} \cdot V_{Rk}$ (Gruppe von 2 Ankern)

 $N^{g}_{Rk} = \alpha_{g,N} \coprod \bullet \alpha_{g,N} \bot \bullet N_{Rk}; \quad V^{g}_{Rk} = \alpha_{g,V} \coprod \bullet \alpha_{g,V} \bot \bullet V_{Rk} \quad (Gruppe von 4 Ankern)$

fischer Injektionssystem FIS VL für Mauerwerk

Verwendungszweck

Rand- und Achsabstände

Anhang B 11

Appendix 17/44

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** von **Ankerstangen** unter Zugbeanspruchung

Ankerstange			М8	M10	M12				
Zugtragfähigkeit, Staf	lversagen								
		4.8		15(13)	23(21)	33			
ੁੱਛੇ Stahl verzinkt		5.8		19(17)	29(27)	43			
		8.8		29(27)	47(43)	68			
O Nichtrostender Hochkorrosions- Hochkorrosions- Hochkorrosions-	Festigkeits- klasse	50	[kN]	19	29	43			
<u>Ö</u> Hochkorrosions-		_70		26	41	59			
≥ beständiger Stahl HCR		80		30	47	68			
Teilsicherheitsbeiwer	te ¹⁾								
		4.8		1,50					
ழ் _z Stahl verzinkt		5.8		1,50					
dr Signal verzinkt Signal verzinkt		8.8		1,50					
Stani verzinkt Nichtrostender Stahl R und Hochkorrosions-	Festigkeits- klasse	50	[-]	2,86					
Hochkorrosions-		_70			1,50 ²⁾ / 1,87				
beständiger Stahl HCR		80		1,60					

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injek	ktionssystem FIS	VL für N	/lauerwerk
---------------	------------------	----------	------------

Charakteristische Stahltragfähigkeiten von Ankerstangen unter Zugbeanspruchung

²⁾ Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1: Charakteristische Werte für die **Stahltragfähigkeit** von **Ankerstangen** unter Querzugbeanspruchung

Ankerstange				M8	M10	M12		
Quer	zugtragfähigkeit,	Stahlversag	en					
ohne	Hebelarm							
			4.8		9(8)	14(13)	20	
,s,	Stahl verzinkt		5.8		11(10)	17(16)	25	
d	Taraki adaraka	8.8		15(13)	23(21)	34		
Charakt. erstand	Nichtrostender Stahl R und	Festigkeits- klasse	50	[kN]	9	15	21	
Charakt. Widerstand V _{Rk,s}	Hochkorrosions-		70		13	20	30	
	beständiger Stahl HCR		80		15	23	34	
mit Hebelarm								
ω,			4.8		15(13)	30(27)	52	
ORK,s	Stahl verzinkt	Festigkeits- klasse	5.8	[Nm]	19(16)	37(33)	65	
ع بـ Σ :÷			8.8		30(26)	60(53)	105	
hara stan			50		19	37	65	
Vider	Hochkorrosions-		70		26	52	92	
>	beständiger Stahl HCR		80		30	60	105	
Teilsi	cherheitsbeiwert	e ¹⁾						
			4.8			1,25		
ts	Stahl verzinkt		5.8			1,25		
rheits ‱,∨			8.8			1,25		
eilsicherheits- beiwert γ _{Ms,} ν	Nichtrostender Stahl R und	Festigkeits- klasse	50	[-]	2,38			
Teils bei	Hochkorrosions-		70			1,25 ²⁾ / 1,56		
	beständiger Stahl HCR		80			1,33		

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS VL für Mauerw	ərk
--	-----

Leistung

Charakteristische Stahltragfähigkeiten von Ankerstangen unter Querzugbeanspruchung

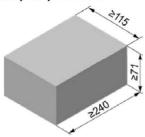
²⁾ Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C3.1: Charakteristische Werte für die **Stahltragfähigkeit** von **Innengewindeankern FIS E** unter Zug- / Querzugbeanspruchung

					`	<u> </u>	, ,	
fischer Innengewi	fischer Innengewindeankern FIS E					M8	M10	M12
Zugtragfähigkeit, Stahlversagen								
Charakteristischer		Festigkeits- klasse	5.8	F1 A 17	10	18	29	42
Widerstand N _{Rk} , mit Schraube	N _{Rk,s}	Festigkeits-	R	[kN]	14	26	41	59
Till Octifiadoe		klasse 70	HCR		14	26	41	59
Teilsicherheitsbeiwerte ¹⁾								
Teilsicherheits- beiwert γ _{Ms,N}		Festigkeits- klasse	5.8	r 1		1,	50	
	γMs,N	Festigkeits-	R	[-]		1,	87	
		klasse 70	HCR			1,	87	
Querzugtragfähig	keit,	Stahlversag	en					
ohne Hebelarm								
Charakteristischer	.,	Festigkeits- klasse	5.8	[kN]	5	9	15	21
Widerstand mit Schraube	$V_{Rk,s}$	Festigkeits-	R		7	13	20	30
Till Comadoc		klasse 70	HCR		7	13	20	30
mit Hebelarm								
Charakt.	• 0	Festigkeits- klasse	5.8	FN 1 1	8	19	37	65
Widerstand	1 ⁰ Rk,s	Festigkeits-	R	[Nm]	11	26	52	92
		klasse 70	HCR		11	26	52	92
Teilsicherheitsbei	wert	e ¹⁾						
Teilsicherheits-		Festigkeits- klasse	5.8			1,	25	
beiwert $^{\gamma_{\text{N}}}$	Ms,V	Festigkeits-	R	[-]		1,	56	
		klasse 70	HCR			1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen existieren


fischer Injektionssystem FIS VL für Mauerwerk

Leistung

Charakteristische Stahltragfähigkeiten von fischer Innengewindeanker FIS E

Anhang C 3

Appendix 20/44

Vollziegel Mz, NF, EN 771-1						
Hersteller z.B. Wienerberger						
Nennmaße	[mama]	Länge L	Breite B	Höhe H		
	[mm]	≥ 240	≥ 115	≥ 71		
Dichte ρ	ichte ρ [kg/dm³]		≥ 1,8			
Druckfestigkeit f	。[N/mm²]	≥ 12 / ≥ 20				
Norm oder Anhang EN 771-1						

Tabelle C4.1: Installationsparameter mit Randabstand c=100mm

Ankerstange		M8	M10	M12	-			
Innongowing	leanker FIS E				М6	M8		
Innengewind	lealikei FIS E		-	-	-	11)	k 85	
Ankerstangen	und Innengewindea	nker FIS E ohne	Injektions-Anker	hülse				
Est - latin -			50	50	50			
Effektive Verankerungst	iefe h _{ef}	[mm]	80	80	80	85		
			200	200	200			
Max. Montage- drehmoment	T _{inst}	[Nm]	10			4	10	
Allgemeine In	stallationsparameter							
Randabstand	Cmin		100			10	00	
Randabstand h	nef=200 Cmin	1	150			-	1)	
	Smin II,	N	60			6	0	
	h _{ef} =200 s _{min} II,	[mm]		240			_1)	
Achs- abstand	Smin II,	S _{min} II,v		240				
abstand	Scr	П		240				
	Scr⊥ = Smin .		75			75		

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

1) Leistung nicht bewertet

Tabelle C4.2: Gruppenfaktoren

Ankerstange			М8	M10	M12	-				
l	ankar FIC F					М6	M8			
Innengewinde	eanker FIS E		-	-	-	11x85				
Randabstand	Cmin	[mm]		1(00					
	$\alpha_{g,N}$ II			1	,5					
-	α _{g,V} II		2,0							
	h _{ef} =200 α _{g,N} II		1,5							
	h _{ef} =200 α _{g,V} II		2,0							
Gruppenfaktor	<u>α_{g,N} ⊥</u>	[-]	2,0							
- - -	<u>αg,ν </u>		2,0							
	h _{ef} =200 α _{g,N} ⊥		2,0							
	h _{ef} =200 α _{g,} v⊥		2,0							

fischer Injektionssystem FIS VL für Mauerwerk

Leistund

Vollziegel Mz NF, Abmessungen, Installationsparameter c=100mm

Anhang C 4

Appendix 21/44

Tabelle C5.1: Charakteristischer Widerstand unter Zuglast für Randabstand c=100mm

Ankerstange)		M8		MITU		W12			-	•	
Innengewindeanker FIS E		-	-		-			M6 M8				
Zug	last N	l _{Rk} [kl	N] in Abhängigkeit vo	n der E	Druckfestigkeit f₀ (Temperaturbereich 50/80°C)							
Druck-	Nutzı	ıngs-		Effektive Verankerungstiefe hef [mm]								
	kateg		≥ 50	50	80	200	50	80	200	8	5	
≥ 12N/mm ²	w/w	w/d	2,5	2,0	3,0	7,5	2,0	3,5	5,0	3,	5	
2 12N/MM-	d/	/d	4,0	3,5	5,0	12,0	3,0	5,5	8,0	5,	5	
≥ 20N/mm ²	w/w	w/d	3,5	3,0	4,5	11,0	3,0	5,0	7,0	5,	0	
2 2011/MM²	d/	/d	5,5	5,0	7,0	12,0	4,5	8,0	11,5	8,	0	

Tabelle C5.2: Charakteristischer Widerstand unter Querlast für Randabstand c=100mm

Ankerstange)	M8	М	10	M	12	-	1		
Innengewindeanker		_				_	М6	М8		
FIS E		-		-		-	11x85			
Que	rlast V _{Rk} [k	N] in Abhängigkeit vo	on der Dru	ckfestigkei	t f₀ (Tempe	eraturberei	ch 50/80°C)		
Druck-	Nutzungs-		Effektive Verankerungstiefe hef [mm]							
festigkeit f ь	kategorie	≥ 50	≥ 50	200	≥ 50	200	8	5		
≥ 12N/mm²	w/w w/d d/d	2,5	4,0	8,5	4,0	11,5	2,	5		
≥ 20N/mm²	w/w w/d d/d	4,0	6,0	12,0	5,5	12,0	4,	0		

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssystem	FIS VI	_ für Mauerwerk
--------------------------	--------	-----------------

Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querlast c=100mm

Tabelle C6.1: Installationsparameter mit red. Randabstand c=60mm

Ankerstange				M8	M10	M12	-	-	
Innengewinde	ankar Eli	2 E		_	_	_	М6	М8	
Innengewinde	anker rik	<i>,</i>		-	-	-	11x85		
Ankerstangen	und Inne	engewind	eanker FIS E	ohne Injektions	-Ankerhülse				
Effektive Verankerungstiefe				50	50	50			
		h _{ef}	[mm]	100	100	100	85		
				200	200	200			
Max. Montage- drehmoment T _{inst} [Nm]			10		4	10			
Allgemeine In	stallation	sparamet	er						
Randabstand		Cmin			6	0			
Randabstand h	n _{ef} =200	Cmin			6	0			
		s _{min} II,N			8	0			
	h _{ef} =20	00 s _{min} II, _N	[mm]		8	0			
Achs- abstand		s _{min} II,v	[mm]		8	0			
		s _{cr} II							
		Smin⊥			8	0			
		scr⊥			3x	h _{ef}			

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C6.2: Gruppenfaktoren

Ankerstange			М8	M10	M12		•				
Innengewindea	nker FIS F		_	_	_	М6	М8				
iiiieiigewiiidea	ilkei i io L		·-	_	_	11x85					
Randabstand	Cmin	[mm]		6	0						
	$\alpha_{g,N}$ II			0	,6						
_	α _{g,V} II		1,3								
	h _{ef} =200 α _{g,N} II		1,4								
Ou van amfalstan	h _{ef} =200 α _{g,V} II		1,5								
Gruppenfaktor –	$\alpha_{\sf g,N} \perp$		0,3								
_	$\alpha_{ extsf{g,V}} \perp$		1,3								
	h _{ef} =200 $\alpha_{g,N}$ \perp		2,0								
	h _{ef} =200 $\alpha_{g,V}$ \perp		1,1								

fischer Injektionssystem FIS VL für Mauerwerk
Loiotung

Anhang C 6

Vollziegel Mz NF, Abmessungen, Installationsparameter c=60mm

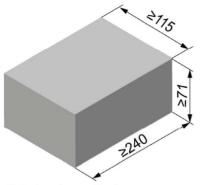
Tabelle C7.1: Charakteristischer Widerstand unter Zuglast für red. Randabstand c=60mm

Ankerstange	M8	M10	M12		-
Innengewindeanker				М6	M8
FIS E	-	-	-	11x85	
Zuglast New [k	NI in Ahhängigkeit vo	on der Druckfestigkei	t f _b (Temperaturherei	ch 50/80°C	1

Zug	Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₀ (Temperaturbereich 50/80°C)											
Druck-	Nutzui	ngs		Effektive Verankerungstiefe hef [mm]								
festigkeit f _b	katego	orie	50	100	50	100	200	50	100	200	85	
> 40N/2	w/w	w/d	2,0	2,0	2,0	2,5	_1)	2,0	2,5	_1)	_1)	
≥ 12N/mm ²	d/d		3,0	4,0	3,0	4,0	9,5	3,0	4,0	9,5	_1)	
≥ 20N/mm ²	w/w	w/d	2,5	3,0	2,5	3,5	_1)	3,0	3,5	_1)	_1)	
2 2014/111111	d/c	t	4,5	5,5	4,5	5,5	12	4,5	5,5	12	_1)	

¹⁾ Leistung nicht bewertet

Tabelle C7.2: Charakteristischer Widerstand unter Querlast für red. Randabstand c=60mm


Ankerstan	ge	M	18		M10			M12		-	
Innengewindeanker			_				_		M6	М8	
FIS E								11x8		(85	
Qı	uerlast V _{Rk} [k	N] in Abhä	ngigkeit v	on der	Druckfe	estigke	it f₀ (Te	mperat	urberei	ch 50/80°C)
Druck-	Nutzungs		Effektive Verankerungstiefe hef [mm]								
festigkeit f _b	kategorie	50	100	50	100	200	50	100	200	8	5
≥ 12N/mm²	w/w w/d d/d	1,2	3,0	2,0	3,0	1,5	1,5	3,0	3,0	_1)
≥ 20N/mm ²	w/w w/d d/d	1,5	4,5	3,0	4,5	2,5	2,0	4,5	4,5	_1	

¹⁾ Leistung nicht bewertet

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querlast c=60mm

Kalksandvollstein KS, NF, EN 771-2

Kalks	andvollst	ein KS, NF	, EN 771-2			
Hersteller						
Nennmaße	[mm]	Länge L	Breite B	Höhe H		
Inellillabe	[mm]	≥ 240	≥ 115	≥ 71		
Dichte ρ	[kg/dm³]		≥ 1,8			
Druckfestigkeit fb	[N/mm ²]	≥ 12 / ≥ 20				
Norm oder Anhang	9		EN 771-2			

Tabelle C8.1: Installationsparameter

Ankerstange			M8	M10	M12		-					
Innongowindoonk	SE EIC I	_				М6	М8					
Innengewindeanke	er rio i	-	-	-	-	112	x85					
Ankerstangen und	l Innen	gewin	deanker FIS E ohne	e Injektions-Ankerh	nülse							
E ()			50	50	50							
Effektive Verankerungstiefe		[mm]	100	100	100	8	5					
Verankerungshere			_1)	200	200							
Max. Montage- drehmoment	T _{inst}	[Nm]	5	5 15 15 3								
Allgemeine Installa	ationsp	parame	eter									
Randabstand	Cmin			6	60							
	s _{min}			8	80							
Achs-	s _{cr} II	[mm]		8	30							
abstand	Smin⊥			3x h _{ef}								
	scr⊥			3x	h _{ef}							
Bohrverfahren												
Hammerbohren mit	Hartme	etall-Ha	ammerbohrer									

1) Leistung nicht bewertet

Tabelle C8.2: Gruppenfaktoren

Ankerstange		M8 M10 M12 -							
Innengewindeanker FIS E		_	_	_	М6	М8			
					112	11x85			
	$\alpha_{g,N}$ Π	0,7							
Cruppopfoldor	α _{g,V} II	1,3							
Gruppenfaktor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]	2,0							
	α _{g,V} ⊥	2,0							

fischer Injektionssystem FIS VL für Mauerwerk
Loiotung

Anhang C 8

Kalksandvollstein KS, NF, Abmessungen, Installationsparameter

Appendix 25/44

Kalksandvollstein KS, NF, EN 771-2

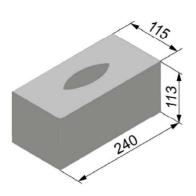
Tabelle C9.1: Charakteristischer Widerstand unter Zuglast

Ankerstange	9		M8			M10		M12		M12 -				
Innengewindeanker FIS E		er		-						М6	M8			
							-			11x85				
Zuç	Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)													
Druck-	Nutzu	ngs-		Effektive Verankerungstiefe hef [mm]										
festigkeit f _b	katego	orie	50	100	50	100	200	50	100	200	8:	5		
≥ 12N/mm ²	w/w	w/d	2,5	4,5	2,5	3,5	7,0	2,5	3,0	6,5	2,	5		
2 12N/MM=	d/d	d	4,0	8,0	4,0	5,5	12	4,0	4,5	12	4,	0		
≥ 20N/mm ²	w/w	w/d	3,5	6,5	3,5	4,5	10	3,5	4,0	9,5	3,	5		
2 20N/IIIII	d/d	d	6,0	11	6,0	8,0	12	6,0	6,5	12	6,	0		
, and the second												The state of the s		

Tabelle C9.2: Charakteristischer Widerstand unter Querlast

Ankerstange)	M	18	M	10	M	12	-		
Innengewindeanker FIS E								М6	M8	
		-		•		-		11x85		
Querlast V _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₀ (Temperaturbereich 50/80°C)										
Druck-	Nutzungs-		Effektive Verankerungstiefe hef [mm]							
festigkeit f _b	kategorie	50	100	50	≥100	50	≥100	8	5	
≥ 12N/mm²	w/w w/d d/d	1,5	3,0	1,2	2,0	1,2	2,0	1,	2	
≥ 20N/mm²	w/w w/d d/d	2,5	4,0	1,5	3,0	1,5	3,0	1,	5	

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27


fischer Injektionssystem F	IS VL für l	Mauerwerk
----------------------------	-------------	-----------

Leistund

Kalksandvollstein KS, NF, Charakteristischer Widerstand unter Zug- und Querlast

Anhang C 9

Kalksandvollstein KS, EN 771-2

Kalksandvollstein KS, EN 771-2										
Hersteller			=4							
Nennmaße	[mm]	Länge L	Breite B	Höhe H						
	[mm]	240	115	113						
Dichte ρ	[kg/dm ³]		≥ 1,8							
Druckfestigkeit fb	[N/mm ²]	≥ 10 / ≥ 20								
Norm oder Anhan	g	EN 771-2								

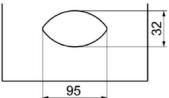


Tabelle C10.1: Installationsparameter

Ankerstange	М8	7.■ 2		M8	M10	M8	M10	1	- 1	M12	M12
Innengewindeanker FIS E	-	M6	M6 M8		_		-		M12 x85		-
Injektions-Ankerhülse FIS H K	12x85	16x		x85		16x	130	20		(85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montage-	Т:	[Nm]	2
drehmoment	• inst	[[,,,,,]]	2

Allgemeine Installationsparameter

Randabstand	Cmin		100
Achsabstand	Smin II		240
	s _{cr} II	[mm]	240
	Smin \perp		115
	s _{cr} ⊥		115

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C10.2: Gruppenfaktoren

Ankerstange	M8	-	M8 M10	M8 M10	-	M12	M12
Innengewindeanker FIS E	-	M6 M8	-	-	M10 M12 15x85	-	-
Injektions-Ankerhülse FIS H K	12x85	162	x85	16x130	20)	k 85	20x130
Gruppen- $\alpha_{g,N} \parallel = \alpha_{g,v} \parallel$				2,0			
faktor $\frac{a_{g,N} \perp a_{g,N} \perp}{\alpha_{g,N} \perp \alpha_{g,N} \perp} [-]$	2,0						

fischer Injektionssystem	FIS VL für	Mauerwerk
--------------------------	------------	-----------

Leistuna

Kalksandvollstein KS, Abmessungen, Installationsparameter

Anhang C 10

Appendix 27/44

Kalksandvollstein KS, EN 771-2

Tabelle C11.1: Charakteristischer Widerstand unter Zuglast

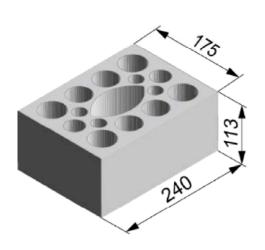
Ankerstange			М8		-	М8	M10	М8	M10	-	M12	M12
Innengewindeanker FIS E		-	M6 M8			-	-		M10 M12 15x85	_	-	
Injektions-Ankerl	12x85	16x85				16x	130	20	x85	20x130		
Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)												
Druckfestigkeit f ь		ungs- gorie										
≥ 10N/mm ²	w/w	w/d	3,5		2	2,0		2	,0	6	,5	4,5
2 1014/111111	d/d		6,0	3,5		,5		3,5		8	,5	7,0
≥ 20N/mm ²	w/w	w/d	5,0	3,		3,0		0 3,0		8	,5	6,0
2 2014/111111	d,	d/d 8,5			5,5			5,0		8	,5	8,5

Tabelle C11.2: Charakteristischer Widerstand unter Querlast

Ankerstange	М8		-	M8 M10		M8	M10	-		M12	M12
Innengewindeanker FIS E	_	М6	M8				_		M12	_	_
	-	112	x85	-		-		15x85		-	_
Injektions-Ankerhülse FIS H K	12x85	16)		x85		16x	130	0 20		x85	20x130
Quartast V., [kN] in Al	Ouerlast V., [kN] in Abbängigkeit von der Drugkfestigkeit f. (Temperaturbereich 50/90°C)										

Querlas	Querlast V _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										
Druckfestigkeit f _b		ungs- gorie									
≥ 10N/mm²	w/w	w/d	3.0	2.5							
2 1014/111111	d/d		3,0	3,5							
≥ 20N/mm ²	w/w	w/d	4.5	5.5							
2 20N/IIIII-	d	/d	4,5	5,5							

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27


fischer Injektionssystem	FIS	VL für	Mauerwerk
--------------------------	-----	--------	-----------

Leistund

Kalksandvollstein KS, Charakteristischer Widerstand unter Zug- und Querlast

Anhang C 11

Kalksandlochstein KSL, 3DF, EN 771-2

2											
Kalksandlochstein KSL, 3DF, EN 771-2											
Hersteller		z. B. KS Wemding									
Nennmaße	[mm]	Länge L	Breite B	Höhe H							
Nemmabe	[mm]	240	175	113							
Dichte ρ	[kg/dm ³]		≥ 1,4								
Druckfestigkeit fb	[N/mm ²]		≥ 12 / ≥ 20								
Norm oder Anhang	9		EN 771-2								

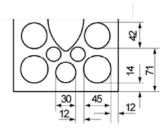


Tabelle C12.1: Installationsparameter

Ankerstange	М8	-		M8	M10	M8	M10		•	M12	M12
Innengewindeanker FIS E	-	M6 M8			-	-		M10 M12 15x85		-	
Injektions-Ankerhülse FIS H K	12x85	16)		x85	85		16x130		20x85		20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montage-drehmoment T_{inst} [Nm]

Allgemeine Installationsparameter

Randabstand	Cmin	60	80							
Achsabstand	S _{min} II		100							
	s _{cr} II [r	nm]	240							
	Smin⊥		115							
	S _{cr} ⊥		115							

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C12.2: Gruppenfaktoren

Ankerstan	М8	-		M8	M10	М8	M10	-		M12	M12	
Innengewindeanker FIS E			М6	M8					M10	M12		
		-	11	x85		-		-	15x85		-	-
Injektions-	Injektions-Ankerhülse FIS H K			12x85 16x85 16x130 20x85 20x13								20x130
Gruppen-	$\alpha_{g,N} \parallel = \alpha_{g,V} \parallel$	1,5										
faktor	$\frac{\alpha_{g,N} \perp = \alpha_{g,V} \perp}{\alpha_{g,N} \perp = \alpha_{g,V} \perp} [-]$	2,0										

fischer Injektionssystem FIS VL für Mauerwerk

Leistung

Kalksandlochstein KSL, 3DF, Abmessungen, Installationsparameter

Anhang C 12

Appendix 29/44

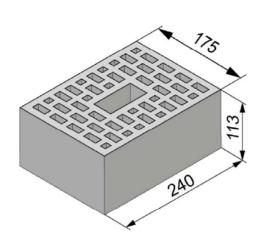
Kalksandlochstein KSL, 3DF, EN 771-2

Tabelle C13.1: Charakteristischer Widerstand unter Zuglast

Ankerstange			М8		-	M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E			-	M6 M8		-			-		M12	-	-
Injektions-Ankerl	IS H K	12x85	11/		k85		16x130		15x85 20x85		k85	20x130	
Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)													
Druckfestigkeit f ь		ungs- gorie											
≥ 12N/mm²	w/w	w/d	2,5		2	,5		3	,0	3,0			3,0
2 12N/IIIII ⁻	/d	2,5		3	,0		3,5		3,5		,5	3,5	
≥ 20N/mm²	w/w	w/d	4,0		4	,5		5,5		5,5		,5	5,5
2 2014/111111	d	/d	4,5		5	,0		6,0		6,0		6,0	

Tabelle C13.2: Charakteristischer Widerstand unter Querlast

Ankerstange	М8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E	-	- M6 M8 11x85			-	-			M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85	16)		x85		16x130		20x85		20x130	


Querlas	Querlast V _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)											
Druckfestigkeit f ь	Nutzungs- kategorie											
≥ 12N/mm²	w/w w/d d/d	2,5		4,5								
≥ 20N/mm²	w/w w/d d/d	4,5	4,0	7,5								

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssyster	n FIS VL für Mauerwerk
--------------------------	------------------------

Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Zug- und Querlast

Hochlochziegel HLz, EN 771-1

Но	Hochlochziegel HLz, EN 771-1											
Hersteller		z.B. Wienerberger										
Nennmaße	[mm]	Länge L	Breite B	Höhe H								
Nemmabe	[mm]	240	175	113								
Dichte ρ	[kg/dm ³]		≥ 0,9	·								
Druckfestigkeit fb	[N/mm ²]		≥ 10									
Norm oder Anhang	g	EN 771-1										

Tabelle C14.1: Installationsparameter

Ankerstange	М8		-	M8 M10		M8	M10	M10 -		M12	M12
Innengewindeanker FIS E	•	M6	M8 x85		-		-		M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85			k 85		16x	130	20		k 85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment T_{inst} [Nm]

Allgemeine Installationsparameter

Randabstand	C _{min}	100
	S _{min} II	240
Ashashatand	s _{cr} II [mm]	240
Achsabstand	Smin ⊥	115
	s _{cr} ⊥	115

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C14.2: Gruppenfaktoren

Ankerstange		М8	-		M8	M10	М8	M10		-	M12	M12
Innengewindeanker FIS E		-	М6	M8		•			M10	M12	_	_
			11:	x85					15	x85		
Injektions-	Ankerhülse FIS H K	12x85	12x85 16x85 16x130 20x85 2							20x130		
Gruppen-	$\alpha_{g,N} \parallel = \alpha_{g,V} \parallel$						2	,0				
faktor	$\frac{\alpha_{g,N} \perp \alpha_{g,N} \perp}{\alpha_{g,N} \perp \alpha_{g,N} \perp} [-]$		2,					,0				

fischer Inj	jektionssystem	FIS VL	für Mauerwerk
-------------	----------------	--------	---------------

Leistung

Hochlochziegel HLz, Abmessungen, Installationsparameter

Anhang C 14

Hochlochziegel HLz, EN 771-1

Tabelle C15.1: Charakteristischer Widerstand unter Zuglast

Ankerstange	М8		-	M8 M10		M8	M10		-	M12	M12
Innengewindeanker FIS E	_	М6	M8		,		l I		M12	_	_
Illinengewindeanker FIS E	-	11x85		'		-		15x85		•	
Injektions-Ankerhülse FIS H K	12x85	16x85		x85		16x130		20x85		20x130	
Zuglast Nev (kN) in Abhängigkeit von der Druckfestigkeit fs (Temperaturbereich 50/80°C)											

•											
Zuglast	Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)										
Druckfestigkeit f₀		ungs- gorie									
≥ 10N/mm ²	w/w	w/d	3,5	3,5		4,5					
2 10N/IIIII-	d	/d	4,0	3,5		5,0					

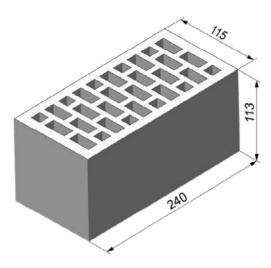
Tabelle C15.2: Charakteristischer Widerstand unter Querlast

Ankerstange	М8		-	M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E		М6	M8					M10	M12		
Innengewindeanker FIS E	-	11x85] •		-		15x85		-	-
Injektions-Ankerhülse FIS H k	12x85	16		x85		16x130			20x85		20x130
Querlast V _{Rk} [kN] in A	Querlast V _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										
Nutzunas-											

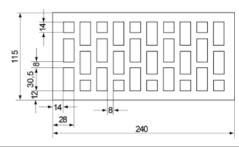
Querias	Queriast VRK [KN] III Abhangigkeit von der brucklestigkeit ib (Temperaturbereich 50/60 C)											
Druckfestigkeit f _b		ungs- gorie										
≥ 10N/mm ²	w/w	w/d	4.0	5.5	6.0							
2 TON/IIIIII	d.	/d	4,0	5,5	6,0							

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssystem FIS VL für Mauerwerk


Leistund

Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querlast


Anhang C 15

Appendix 32/44

Hochlochziegel HLz, 2DF, EN 771-1

Hochlochziegel HLz, 2DF, EN 771-1											
Hersteller		z. B	. Wienerbei	rger							
Nennmaße	[mm]	Länge L	Breite B	Höhe H							
Nemmabe	[mm]	240	115	113							
Dichte ρ	[kg/dm³]		≥ 1,4								
Druckfestigkeit f₀	[N/mm ²]		≥ 20								
Norm oder Anhan	g		EN 771-1								

2

Tabelle C16.1: Installationsparameter

Ankerstange	M8		- M8 M10				M12	
Innengewindeanker FIS E	-	М6	M8			M10	M12	
Illiengewindeanker FIS E	-	11)	(85	_		15x85		-
Injektions-Ankerhülse FIS H K	12x85	16)		c 85		20		c 85

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment T_{inst} [Nm]

Allgemeine Installationsparameter

Randabstand	d C _{min}		80
Achs-	$s_{cr} \ II = s_{min} \ II$	[mm]	240
abstand	$s_{cr} \perp = s_{min} \perp$		115

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C16.2: Gruppenfaktoren

Ankerstange		М8	-	•	М8	M10	-		M12
Innengewindeanker FIS E		-	M6 M8 11x85		•	•	M10 M12 15x85		-
Injektions-Ankerhülse FIS H K		12x85		16	85		20)		k 85
Gruppenfaktor	$ \begin{array}{c c} \alpha_{g,N} & II \\ \hline \alpha_{g,V} & II \\ \hline \alpha_{g,N} & \bot \end{array} $ [-]				2	2			

fischer Injektionssystem FIS VL für Mauerwerk

Leistung

Hochlochziegel HLz, 2DF, Abmessungen, Installationsparameter

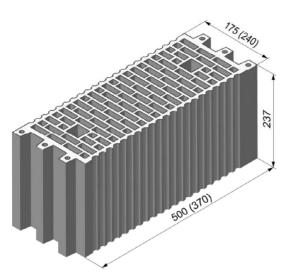
Anhang C 16

Hochlochziegel HLz; 2DF, EN 771-1

Tabelle C17.1: Charakteristischer Widerstand unter Zuglast

Ankerstange			М8		-	М8	M10		-	M12
Innengewindeanl	engewindeanker FIS E			M6 M8 11x85			•	M10	M12 x85	-
Injektions-Ankerl	nülse F	IS H K	12x85 16x85 20				20	c 85		
Zuglast	N _{Rk} [kN	l] in Ab	hängigkeit von	der Dr	uckfesti	gkeit f _b	(Tempei	raturber	eich 50	/80°C)
Druckfestigkeit f ь	Nutzı kateç	_								
≥ 20N/mm²	w/w	w/d	3,5		2	5			3	,0
2 20N/mm- d/d		'd	4,0		2	5			3	,0

Tabelle C17.2: Charakteristischer Widerstand unter Querlast


Ankerstange			M8		-	M8	M10		M12	
Innengewindeanker FIS E		_		М6	М8			M10	M12	
		_	-	11x85		-		15x85		-
Injektions-Ankerhülse FIS H K			12x85		16:	x85			x85	
Querlas	t V _{Rk} [k	N] in Al	bhängigkeit vor	n der Dr	uckfest	igkeit f _b	(Tempe	raturbe	reich 50	/80°C)
Druckfestigkeit f ₀	Druckfestigkeit f _b Nutzungs-kategorie									
≥ 20N/mm ²	> 20N/mm²		7.5	4.0		4.5			0	
2 2014/mm- d/d		7,5	4,0		4,5		8,5		,ວ	

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssystem	FIS VL für Mauerwerk
--------------------------	----------------------

Hochlochziegel HLz, 2DF, Charakteristischer Widerstand unter Zug- und Querlast

Hochlochziegel HLz, EN 771-1

Hochlochziegel HLz, EN 771-1												
Hersteller z. B. Wienerberger, F												
	Länge L	Breite B	Höhe H									
[mm]	500	175	237									
	370	240	237									
[kg/dm³]		≥ 1,0										
[N/mm ²]		≥ 10										
g		EN 771-1										
	[mm]	z. B. Wie Länge L [mm] 500 370 [kg/dm³] [N/mm²]	z. B. Wienerberger, Länge L Breite B [mm] 500 175 370 240 [kg/dm³] ≥ 1,0 [N/mm²] ≥ 10									

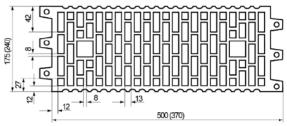


Tabelle C18.1: Installationsparameter

Ankerstange	M8 - M8		M10	M8	M10	M10 -		M12	M12		
Innengewindeanker FIS E	-	M6 M8		-	-		M10 M12		-	-	
Injektions-Ankerhülse FIS H K	12x85			k85		16x130		20		c 85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment

[Nm]

2

240

Allgemeine Installationsparameter

Randabstand	Cmin		
	S _{min} II		
Achachatand	s _{cr} II	[mm]	
Achsabstand	Smin⊥		

 $\mathsf{T}_{\mathsf{inst}}$

100	
100	
500 (370)	
100	

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C18.2: Gruppenfaktoren

Ankerstange	М8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E	-	М6	M8			_		M10	M12	_	_
Illiengewindeanker FIS E		11:	x85				•	15x85		-	-
Injektions-Ankerhülse FIS H K	12x85		16:	x85		16x	130		20)	(85	20x130
Gruppen- $\frac{\alpha_{g,N} I = \alpha_{g,V} I}{\alpha_{g,N} \perp = \alpha_{g,V} \perp}$ [-]							1				

fischer Injektionssystem FIS VL für Mauerwerk

Leistung

Hochlochziegel HLz, Abmessungen, Installationsparameter

Anhang C 18

Appendix 35/44

Hochlochziegel HLz, EN 771-1

Tabelle C19.1: Charakteristischer Widerstand unter Zuglast

Ankerstange	M8	-		M8	M10	M8	M10	=		M12	M12
Innongowindoonkor EIC E		М6	M8					M10	M12		
Innengewindeanker FIS E	-	11x85		-		-		15	k 85	-	
Injektions-Ankerhülse FIS H k	12x85		16	x85		16x	130		20:	k 85	20x130
Zuglast N _{Rk} [kN] in A	bhängigkei	t von	der D	ruckf	estigk	eit f _b	(Temp	eratu	ırbere	ich 50/80°C	;)
Druglife etiglicit # Nutzungs-											

Zuglast	N _{Rk} [kl	N] in Ab	hängigkeit	t von der Druckfestigkeit fb (Temperaturbereich 50/80°C	()
Druckfestigkeit f ₀	Nutzı kate	ungs- gorie			
≥ 10N/mm ²	w/w	w/d	0,9	2,5	3,0
2 1014/111111	d,	/d	0,9	2,5	3,5

Tabelle C19.2: Charakteristischer Widerstand unter Querlast

Ankerstange			М8	M8 - M8 M10 M8 M10 - M12						M12	M12	
Innengewindeanker FIS E			-	M6	M8 x85	,	-	-		M10 M12 15x85	-	-
Injektions-Ankerhülse FIS H k			12x85		162	(85		16x130		20x85		20x130
Querlas	t V _{Rk} [k	N] in Al	bhängigkei	t von	der D	ruckf	estigk	eit f _b	(Tem	peraturber	eich 50/80°	C)
Druckfestigkeit f ₀	Oruckfestigkeit f b Nutzungs- kategorie											
> 40NI/mama2	w/w	w/d			_				_	_	0	4.5

1,5

1,2

1,5

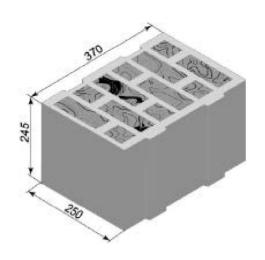
1,2

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

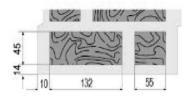
d/d

fischer Injektionssystem FIS VL für Mauerwerk

Leistund


≥ 10N/mm²

Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querlast


Anhang C 19

Appendix 36/44

Hochlochziegel HLz, gefüllt mit Mineralwolle, EN 771-1

Hochlochziegel	Hochlochziegel HLz, gefüllt mit Mineralwolle, EN 771-1												
Hersteller		-											
Nennmaße	[mm]	Länge L	Breite B	Höhe H									
Nemmabe	[mm]	370	250	245									
Dichte ρ	[kg/dm ³]		≥ 0,6										
Druckfestigkeit fb	[N/mm ²]		≥8										
Norm oder Anhang	g		EN 771-1										

Tabelle C20.1: Installationsparameter

Ankerstange	М8		•	M8	M10	M8	M10	-	M12	M12	M12
Innengewindeanker FIS E	-	M6	M8 <85		-		-	M10 M12 15x85	_	-	
Injektions-Ankerhülse FIS H K	12x85	16)		ĸ85		16x	130	20:	x85	20x130	20x200

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Allgemeine Installationsparameter

Randabstar	nd c _{min}		250			
	Smin II	<u> </u>	250			
Achs-	S _{cr} II	[mm]	250			
Achs- abstand	S _{min} ⊥		245			
	Scr ⊥					245

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

 $\frac{\alpha_{\mathsf{g},\mathsf{N}}}{\alpha_{\mathsf{g},\mathsf{V}}} \bot$

Tabelle C20.2: Gruppenfaktoren

Ankerstange	М8	-	•	M8	M10	М8	M10		•	M12	M12	M12
Innengewindeanker FIS E	-	M6 11x	M8 (85		-		-	M10 15)	M12 (85	_	-	-
Injektions-Ankerhülse FIS H K	12x85		162	x 85		16x	130		20:	x85	20x130	20x200
Gruppenfaktor $\frac{\alpha_{g,N} I }{\alpha_{g,V} I } $ [-]								,0				

fischer Injektionssystem FIS VL für Mauerwerk

Leistund

Hochlochziegel HLz, gefüllt mit Mineralwolle, Abmessungen, Installationsparameter

Anhang C 20

Appendix 37/44

Hochlochziegel HLz, gefüllt mit Mineralwolle, EN 771-1

Tabelle C21.1: Charakteristischer Widerstand unter Zuglast

Ankerstange			M8	- M8 N		M10	М8	M10	-	M12	M12	M12	
Innengewindean	ker FIS	E	-	M6 M8 11x85		-		M10 M12 15x85	-		-		
Injektions-Ankerl	nülse F	IS H K	12x85		16)	16x85 16x130			20>	(85	20x130	20x200	
Zuglast	N _{Rk} [kN	l] in Ab	hängigke	it vor	ı der	Dru	ckfes	tigke	eit f _b (Temperat	turbereich	50/80°C)	
Druckfestigkeit f ь	Nutzı kateç	•											
≥ 8N/mm²	w/w	w/d	2,0		1,	,5		2	,5		2,0	·	3,0
≥ 014/111111 ⁻	d/d		2,0		2,	,0		3	,0		2,0	·	3,0

Tabelle C21.2: Charakteristischer Widerstand unter Querlast

Ankerstange	ange		M8 - M8 M		M10	М8	M10	-		M12	M12	M12		
Innengewindean	ker FIS	E	-	M6	M8 x85		-		-	M10 15x		-	-	-
Injektions-Anker	tions-Ankerhülse FIS H k				16	x85		16x	(130		20)	c 85	20x130	20x200
Querlas	t V _{Rk} [k	N] in A	bhängigk	eit vo	on de	r Dru	ıckfe	stigk	eit f _b	(Tem	pera	turbereic	h 50/80°C)
Druckfestigkeit f ₀		ungs- gorie												
> ON/22222	w/w	w/d	v/d 0.5							·				

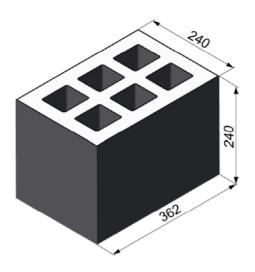
3,0

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

d/d

2,5

fischer Injektionssystem FIS VL für Mauerwerk


≥ 8N/mm²

Hochlochziegel HLz, gefüllt mit Mineralwolle, Charakteristischer Widerstand unter Zug- und Querlast

1,5

Anhang C 21 Appendix 38/44

Hohlblock aus Leichtbeton Hbl, EN 771-3

Hohlblock aus Leichtbeton Hbl, EN 771-3										
Hersteller										
Nennmaße	[mm]	Länge L	Breite B	Höhe H						
Nemmabe	[111111]	362	240	240						
Dichte ρ	[kg/dm³]		≥ 1,0							
Druckfestigkeit fb	[N/mm ²]		≥ 4							
Norm oder Anhan	g	EN 771-3								

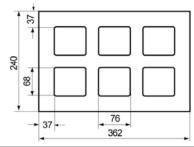


Tabelle C22.1: Installationsparameter

Ankerstange	М8		-	M8 M10		M8	M10	=		M12	M12
Innengewindeanker FIS E	-	M6	M8 x85		-		-		M12 x85		
Injektions-Ankerhülse FIS H K	12x85	16:		k 85	16x13		130	20		k 85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment

T_{inst} [Nm]

Allgemeine Installationsparameter

Randabstan	d C _{min}	
	S _{min} II	[man
Achs- abstand	s _{cr} II	[mn
abstand .	Smin ⊥ = Scr ⊥	

[]	60
	100
[mm]	362
	240

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C22.2: Gruppenfaktoren

Ankerstange		М8		-	M8	M10	M8	M10		-	M12	M12					
Innengewindeanker FIS E		-	M6 M8 11x85		-			-		M12 x85	-	-					
Injektions-Anke	12x85				16x130			10.	20)	20x130							
	α _{g,N} II						1	,2									
Gruppenfaktor	α _{g,V} II [-]	1,1															
Gruppemaktor	$\begin{array}{c c} \alpha_{g,N} \perp & & \\ \hline \alpha_{g,V} \perp & & \end{array}$	2,0								2,0							

fischer Injektionssystem FIS VL für Mauerwerk

Leistuna

Hohlblock aus Leichtbeton Hbl, Abmessungen, Installationsparameter

Anhang C 22

Appendix 39/44

Hohlblock aus Leichtbeton Hbl, EN 771-3

Tabelle C23.1: Charakteristischer Widerstand unter Zuglast

Ankerstange	М8	-		М8	M10	M8 M10		=		M12	M12	
Innengewindeanker FIS E	-	M6 M8		_		-			M12 x85	-	-	
Injektions-Ankerhülse FIS H K	12x85	16:		x85		16x130			20	k 85	20x130	

Zuglast	Zuglast N _{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f₅ (Temperaturbereich 50/80°C)								
Druckfestigkeit f ь	Nutzungs- kategorie								
≥ 4N/mm ²	w/w	w/d	3,0						
2 4N/IIIII ⁻	d.	/d	3,0						

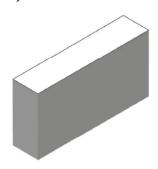
Tabelle C23.2: Charakteristischer Widerstand unter Querlast

Ankerstange	М8		-	M8	M8 M10 M8 M10		-	M12	M12	
Innengewindeanker FIS E	-	M6	M8 x85		-		-	 M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85		16	x85		16x	130	20	(85	20x130

Querlast V_{Rk} [kN] in Abhängigkeit von der Druckfestigkeit f_b (Temperaturbereich 50/80°C) Druckfestigkeit f_b Nutzungs-kategorie ≥ 4N/mm² w/w w/d d/d 2,0

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssystem FIS VL für Mauerwerk


Leistund

Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zug und Querlast

Anhang C 23

Appendix 40/44

Porenbeton, EN 771-4

Porenbeton, EN 771-4									
Hersteller		z. B. Ytong							
Dichte ρ	[kg/dm³]	≥ 0,35	≥ 0,5	≥ 0,65					
Druckfestigkeit fb	$[N/mm^2]$] ≥ 2 ≥ 4 ≥ 6							
Norm oder Anhang	g		EN 771-4						

Tabelle C24.1: Installationsparameter

Ankersta	nge			M	18	М	10	M	12)•			•
Innengew	indeank	er FIS E	=	_		_		_		М6	М8	M10	M12
				11x85				15x85					
Ankersta	nkerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse												
Effektive Verankeru	ıngstiefe	h _{ef}	[mm]	100	200	100	200	100	200	85			
Max. Mon drehmome		T _{inst}	[Nm]	1	8	2	12	2	16	1 2			2
Allgemeir	ne Install	ationsp	oaram	eter									
Randabsta	and	Cmin						1(00				
	s _{cr} II	= Smin II						25	50				
	h _{ef} =	200mm						0	0				
		S _{min} II							<u> </u>				
	h _{ef} =	-200mm	1					3x	h _{ef}				
Achs-		S _{cr} II	[mm]										
abstand	Scr⊥:	= Smin ⊥						25	50				
	h _{ef} =	200mm			80								
		Smin⊥						0	U				
	h _{ef} =	200mm						3×	h _{ef}				
		$s_{cr} oldsymbol{\perp}$						ЭX	Tef				

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

fischer	Injektionssystem	FIS VL für	Mauerwerk
---------	------------------	------------	-----------

Leistung

Porenbeton (zylindrisches Bohrloch), Abmessungen, Installationsparameter

Anhang C 24

Appendix 41/44

Ankerstange			М8	M10	M12	-		-	
Innengewindeanker FIS E						М6	M8	M10	M12
innengewinde	anker FIS E		-	-	-	11x85		15)	k 85
	h _{ef} =200 α _{g,N} II			1,6		-	1)	-	1)
	h _{ef} =200 α _{g,V} II		1,1				_1)		1)
O	$\alpha_{g,N} \parallel, \alpha_{g,V} \parallel$.,			•		•		
Gruppentaktor	h _{ef} =200 α _{g,N} ⊥	[-]		1,6		-	1)	-	1)
	h _{ef} =200 α _{g,V} ⊥			0,8		_	1)	-	1)
	$\alpha_{g,N} \perp, \alpha_{g,V} \perp$				2	•		•	

Tabelle C25.2: Gruppenfaktoren für Porenbeton (Druckfestigkeit f_b ≥ 4 N/mm²)

Ankerstange		М8	M10	M12		-	-		
Innengewindeanker FIS E				-	M6	M6 M8 11x85		M10 M12 15x85	
	h _{ef} =200 α _{g,N} II		0,7		-	1)	-	1)	
	h _{ef} =200 α _{g,V} II		2,0				_1)		
Gruppopfaktor	$\frac{\alpha_{g,N} \parallel, \alpha_{g,V} \parallel}{\rho_{ef} = 200 \alpha_{g,N} \parallel} [-]$			2	·				
Gruppemaktor	$\frac{\log_{g,N} \ln_{g,N} \log_{g,N} \ln_{g,N}}{\ln_{g,N} \ln_{g,N} \ln_{g,N} \ln_{g,N}} $ [-]		0,7		-	1)		1)	
h _{ef} =200 α _{g,V} ⊥			1,2		-	1)		1)	
	$\alpha_{g,N} \perp$, $\alpha_{g,V} \perp$			2					

Leistung nicht bewertet

Tabelle C25.3: Gruppenfaktoren für Porenbeton (Druckfestigkeit f_b ≥ 6 N/mm²)

Ankerstange			М8	M10	M12	-			-
Innongowindoonkor EIS E					_	М6	М8	M10	M12
Innengewinde	Innengewindeanker FIS E		_	_	_	11x85		15x85	
	h _{ef} =200 $\alpha_{g,N}$ II			0,7		-	1)		1)
	h _{ef} =200 $\alpha_{g,V}$ II			2,0	-	1)	_	1)	
Gruppenfaktor	$\alpha_{g,N}$ II, $\alpha_{g,V}$ II	[-]			2				
Gruppemaktor	h _{ef} =200 $\alpha_{g,N} \perp$	[־]		0,7		-	1)		1)
	h _{ef} =200 α _{g,V} ⊥			1)	_	1)			
	$\alpha_{g,N} \perp$, $\alpha_{g,V} \perp$				2				

Leistung nicht bewertet

fischer	Injektionssystem	FIS VL	für Mauerwerk
---------	------------------	--------	---------------

Leistung

Porenbeton, Gruppenfaktoren

Anhang C 25

Porenbeton, EN 771-4

Tabelle C26.1: Charakteristischer Widerstand unter Zuglast

Ankerstange	•		M	18	М	10	М	12		-	-	1
Innengewind FIS E	deank	er		•		•	- M6 M8 M1 11x85			M10 15x	M12 85	
Zuç	glast I	N _{Rk} [k	N] in Abl	hängigke	it von de	er Druckt	festigkei	t f₀ (Tem	peraturb	ereich 5	0/80°C)	
Druck-	Nutzu	ıngs-				Effektive	Veranke	rungstiefe	h _{ef} [mm]			
festigkeit f _b	kateg	orie	100	200	100	200	100	200	85			
≥ 2 N/mm ²	w/w	w/d	1,5	2,0	1,5	3,0	1,5	3,0	1	,5	1,	5
2 2 N/MM-	d/	′d	1,5	3,0	1,5	3,5	2,0	4,0	1	,5	1,	5
≥ 4 N/mm²	w/w	w/d	2,0	1,5	2,5	3,5	2,5	3,5	2	,0	1,	5
2 4 N/MM-	d/	′d	2,0	3,0	3,0	5,0	2,5	5,0	2,0 1,5			5
≥ 6 N/mm ²	w/w	w/d	3,0	2,5	4,5	5,0	4,5	7,0	3	,5	2,	5
_ ≥ 0 IN/MM²	d/	′d	3,5	4,0	5,0	7,0	5,0	9,0	3,5 2,5			5

Tabelle C26.2: Charakteristischer Widerstand unter Querlast

Ankerstange	Э	l v	18	М	10	M	12	<u> </u>			
Innengewindeanker					_				М8	M10	M12
FIS E			_		-			11x85		15x85	
Que	erlast V _{Rk} [k	N] in Ab	hängigk	eit von d	er Druck	festigke	it f _b (Tem	peraturb	pereich 5	0/80°C)	
Druck-	Nutzungs-				Effektive	Veranke	rungstiefe	hef [mm]]		
festigkeit f _b	kategorie	100	200	100	200	100	200	85			
≥ 2 N/mm ²	w/w w/d	1,2	1,2	1,2	1,2	1,5	1,2		1,2		1,5
	d/d	1,2	1,2	1,2	1,2	1,5	1,2		1,2		1,5
≥ 4 N/mm ²	w/w w/d	2,5	2,0	2,0	2,0	2,5	2,0		2,0		2,5
<u> </u>	d/d	2,5	2,0	2,0	2,0	2,0	2,0		2,0		2,5
≥ 6 N/mm ²	w/w w/d	3,0	2,5	3,0	3,0	3,5	4,0		2,5		3,5
	d/d	0,0	_,0	0,0	0,0	0,0	.,0		_,0		0,0

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C27

fischer Injektionssystem FIS VL für Mauerwerk	
Leistung Porenbeton, Charakteristischer Widerstand unter Zug- und Querlast	Anhang C 26 Appendix 43/ 44

β-Faktoren für Baustellenversuche; Verschiebungen

Tabelle C27.1: β-Faktoren für Baustellenversuche

Nutzungskategorie		w/w und w/d	d/d
Temperaturbereich		50/80	50/80
Material	Größe		
	M8	0,57	
	M10	0,59	
Vollsteine	M12 FIS E 11x85	0,6	0,96
	FIS E 15x85	0,62	
	FIS H 16x85 K	0,55	
Lochsteine	Alle Größen	0,86	0,96
Porenbeton (AAC)	Alle Größen	0,73	0,81

Tabelle C27.2: Verschiebungen

Material	N [kN]	δN₀ [mm]	δN∞ [mm]	V [kN]	δV ₀ [mm]	δV∞ [mm]
Vollsteine und Porenbeton h _{ef} =100mm	N _{Rk} 1,4 * γ _{Mm}	0,03	0,06		0,82	0,88
Lochsteine	N _{Rk} 1,4 * γ _{Mm}	0,48	0,06		1,71	2,56
Vollstein Mz NF Anhang C 4 – C 7	N _{Rk} 1,4 * γ _{Mm}	0,74	1,48	V _{Rk} 1,4 * γ _{Mm}	1,23	1,85
Vollstein KS NF Anhang C 8 – C 9	N _{Rk} 1,4 * γ _{Mm}	0,2	0,4	V _{Rk} 1,4 * γ _{Mm}	0,91	1,37
Porenbeton (AAC) h _{ef} =200 mm Anhang C 24 - C 26	N _{Rk} 1,4 * γ _{Mm}	1,03	2,06	V _{Rk} 1,4 * γ _{Mm}	1,25	1,88

Für Verankerung in Porenbeton (AAC) ist der Teilsicherheitsbeiwert γ_{MAAC} anstelle von γ_{Mm} zu verwenden