

LEISTUNGSERKLÄRUNG

DoP 0327

für fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer (Verbundspreizdübel zur Verankerung im Beton)

DE

Eindeutiger Kenncode des Produkttyps:
 DoP 0327

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton, siehe Anhang,

insbesondere die Anhänge B1 - B11.

3. Hersteller: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. Bevollmächtigter:

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330499-01-0601
Europäische Technische Bewertung: ETA-21/0948; 2022-09-09

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1

Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch: Anhänge C2-C4

Widerstand für kegelförmigen Betonausbruch: Anhang C2

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C2

Robustheit: Anhänge C2-C4

Montagedrehmoment: Anhänge B3, B4

Minimaler Rand- und Achsabstand: Anhänge B3, B4

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1 Widerstand für Pry-out Versagen: Anhang C2 Widerstand für Betonkantenbruch: Anhang C2

Verschiebungen unter kurz- und langzeitiger Belastung:

Verschiebungen unter kurz- und langzeitiger Belastung: Anhänge C5

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand für Zugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand für Zugbelastung, Verschiebungen, Kategorie C2: NPD Widerstand für Querzugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand für Querzugbelastung, Verschiebungen, Kategorie C2: NPD

Faktor Ringspalt: NPD

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen: NPD

8. Angemessene Technische Dokumentation und/oder

Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr.-Ing. Oliver Geibig, Geschäftsführer Business Units & Engineering

Tumlingen, 2022-09-16

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V84.xlsm 1/1

Translation guidance Essential Characteristics and Performance Parameters for Annexes

Übersetzungshilfe der Wesentlichen Merkmale und Leistungsparameter für Annexes

	Ubersetzungshilfe der Wesentlichen Merkmale und Leistungsparameter für Annexes						
	chanical resistance and stability (BWR 1)						
Me	chanische Festigkeit und Standsicherheit (BWR 1)						
Ch	aracteristic resistance to tension load (static and quasi-static loading):						
Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):							
1	Resistance to steel failure: N _{Rk,s} [kN]						
	Widerstand für Stahlversagen:						
2	Resistance to combined pull- out and concrete cone failure:		T_{Rk} and/or $T_{Rk,100}$ [N/mm ²], ψ^0_{sus} [-] (BF)				
	Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch:		$N_{Rk,p}$ and/or $N_{Rk,p,100}$ [kN] (BEF)				
3	Resistance to concrete cone failure:		c _{cr,N} [mm], k _{cr,N} , k _{ucr,N} [-]				
	Widerstand für kegelförmigen Betonausbruch:						
4	Edge distance to prevent splitting under load:		c _{cr,sp} [mm]				
	Randabstand zur Vermeidung von Spaltversagen bei Belastung:						
5	Robustness:		Y _{inst} [-]				
	Robustheit:						
6	Maximum installation torque:		max T _{inst} [Nm] (BF)				
1							
1	Installation torque:		T _{inst} [Nm] (BEF)				
1	Montagedrehmoment:						
7	Minimum edge distance and spacing:		c _{min} , s _{min} , h _{min} [mm]				
1	Minimaler Rand- und Achsabstand:		-				
Ch	aracteristic resistance to shear load (static and quasi-static loading):						
	arakteristischer Widerstand bei Querzugbelastung (statische und quasi-stat	tische Belast	ung):				
_	Resistance to steel failure:		$V_{Rk.s}^{0}$ [kN], $M_{Rk.s}^{0}$ [Nm], k_{7} [-]				
ľ	Widerstand für Stahlversagen:		Rk,s [KIN], IVI Rk,s [INIII], N7 [-]				
9	Resistance to pry-out failure:		k ₈ [-]				
ľ	Widerstand für Pry-out Versagen:						
10	Resistance to concrete edge failure:		d _{nom} , I _f [mm]				
10	Widerstand für Betonkantenbruch:	anom, it [iiiii]					
Dis	splacements under short-term and long-term loading:						
	rschiebungen unter kurz- und langzeitiger Belastung:						
	Displacements under short-term and long-term loading:		Σ Σ Ι				
	Verschiebungen unter kurz- und langzeitiger Belastung:		δ_0 , δ_∞ [mm or mm/(N/mm ²)]				
Ch	aracteristic resistance and displacements for seismic performance categories C1	and C2:					
	arakteristische Widerstände und Verschiebungen für die seismischen Leist		ion C1 und C2:				
	Resistance to tension load, displacements:	ungskategor	ieli C1 uliu C2.				
12		C1	N [IAN] (OII)				
	Widerstand für Zugbelastung, Verschiebungen, Kategorie C1:	Ci	N _{Rk,s,C1} [kN] (all)				
			T _{Rk,C1} [N/mm ²] (BF)				
			N _{Rk,p,C1} [kN] (BEF)				
	Widerstand für Zugbelastung, Verschiebungen, Kategorie C2:	C2	N _{Rk,s,C2} [kN] (all)				
			T _{Rk,C2} [N/mm ²] (BF)				
			N _{Rk,p,C2} [kN] (BEF)				
L			δ _{N,C2} [mm] (all)				
13	Resistance to shear load, displacements:	1	I				
1	Widerstand für Querzugbelastung, Verschiebungen, Kategorie C1:	C1	V _{Rk,s,C1} [kN] (all)				
1							
1	Widerstand für Querzugbelastung, Verschiebungen, Kategorie C2:	C2	V _{Rk,s,C2} [kN] (all)				
			δ _{V,C2} [mm] (all)				
14	Factor annular gap:		α_{gap} [-]				
L	Faktor Ringspalt:						
Hygiene, health and the environment (BWR 3)							
Hygiene, Gesundheit und Umwelt (BWR 3)							
15	Content, emission and/or release of dangerous substances:		-				
1	Emission und/ oder Freisetzung von gefährlichen Stoffen:						

Fischer DATA DOP_ECs_V84.xlsm Appendix 0

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer" ist ein Verbundspreizdübel, der aus einer Kartusche mit Injektionsmörtel fischer FIS HB oder einer fischer Reaktionspatrone FHB II-P(F) und einer Ankerstange FHB II - A S oder FHB II Inject - A S mit Sechskantmutter und Unterlegscheibe besteht.

Die Reaktionspatrone wird in ein Bohrloch im Beton gesetzt. Die speziell geformte Ankerstange wird in die Reaktionspatrone mit einer Maschine durch Schlagen und Drehen getrieben. Für das Injektionssystem wird die Ankerstange in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt. Die Lastübertragung erfolgt durch Formschluss mehrerer Konen im Verbundmörtel und durch eine Kombination aus Verbundspannung und Reibungskräften in den Verankerungsgrund (Beton). Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

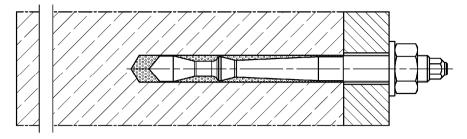
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4, B 3 bis B 4
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 2
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

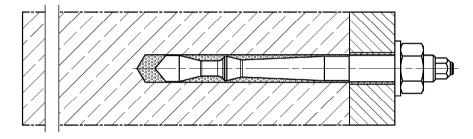
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

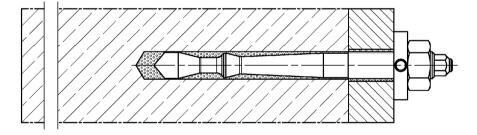
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

Highbond - Anker FHB II - A S


Vorsteckmontage

Durchsteckmontage

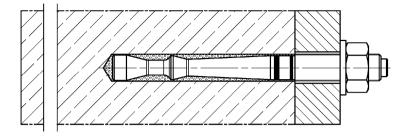
Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

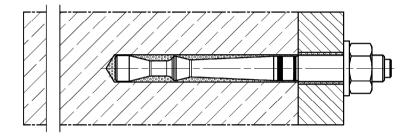
fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

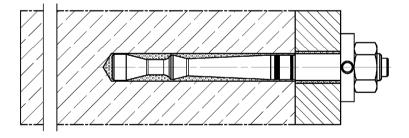
Einbauzustände Teil 1; FHB II - A S


Anhang A 1

Anhang 3 / 24


Einbauzustände Teil 2

Highbond - Anker FHB II Inject - A S (Anwendung nur mit Injektionsmörtel FIS HB)


Vorsteckmontage

Durchsteckmontage

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Einbauzustände Teil 2; FHB II Inject - A S

Anhang A 2

Anhang 4 / 24

Übersicht Systemkomponenten Teil 1 Injektionskartusche (Shuttlekartusche) mit Verschlusskappe; Größen: 360 ml. 825 ml. Aufdruck: fischer FIS HB. Verarbeitungshinweise. Haltbarkeitsdatum. Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen Injektionskartusche (Coaxialkartusche) mit Verschlusskappe; Größen: 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: fischer FIS HB, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen Reaktionspatrone ≺FHB II-... Statikmischer FIS MR Plus für Injektionskartuschen bis 410 ml Statikmischer FIS JMR für Injektionskartusche 825 ml Verlängerungsschlauch Ø 9 für Statikmischer FIS MR Plus; Verlängerungsschlauch Ø 9 oder Ø 15 für Statikmischer FIS JMR; Injektionsadapter Abbildungen nicht maßstäblich fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang A 3 Produktbeschreibung Übersicht Systemkomponenten Teil 1 Anhang 5 / 24 Kartuschen / Reaktionspatrone / Statikmischer / Zubehör

Übersicht Systemkomponenten Teil 2 fischer Highbond - Anker FHB II und FHB II Inject; vormontierter Zustand Highbond - Anker FHB II - A S Highbond - Anker FHB II Inject - A S alternative Ausführung alternative Ausführung Highbond Ankerstange FHB II - A S Größen: M16, M20, M24 Highbond Ankerstange FHB II Inject - A S Größen: M16, M20, M24

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Übersicht Systemkomponenten Teil 2 Ankerstangen Anhang A 4

Anhang 6 / 24

Übersicht Systemkomponenten Teil 3 fischer Verfüllscheibe (verschiedene Ausführungen) radial schräg axial Kegelpfanne Unterlegscheibe Sechskantmutter Reinigungsbürste BS Druckluft-Reinigungsgerät ABP mit Druckluftdüse: oder Ausbläser groß ABG:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Übersicht Systemkomponenten Teil 3 Stahlteile / Reinigungsbürste / Ausbläser Anhang A 5

Anhang 7 / 24

Tabelle A6.1: Werkstoffe								
Teil	Bezeichnung	Material						
1	Injektionskartusche		Mörtel, Härter, Füllstoffe					
2	Reaktionspatrone		Mörtel, Härter, Füllstoffe					
		Stahl	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C				
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4:2006+A1:2015	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits- klasse CRC V nach EN 1993-1-4:2006+A1:2015				
		Festigkeitsklasse 8.8 EN ISO 898-1:2013	Festigkeitsklasse 80 EN ISO 3506-1:2020	Festigkeitsklasse 80 EN ISO 3506-1:2020				
3	Highbond- Ankerstange FHB II - A S oder FHB II Inject - A S	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018 A₅ > 12 % Bruchdehnung	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 A ₅ > 12 % Bruchdehnung	1.4565; 1.4529; EN 10088-1:2014 A ₅ > 12 % Bruchdehnung				
4	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				
5	Sechskantmutter	Festigkeitsklasse 8 gemäß EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1:2014				
6	Kegelpfanne oder fischer Verfüll-scheibe	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				

Spezifizierung des Verwendungszwecks Teil 1

		fischer Highbond Injektionsmörtel FIS HB oder Rea	l-Anker FHB II mit ktionspatrone FHE	3 II-P / FHB II-PF		
		FHB II - A S	nject - A S			
		Injektionsmörtel FIS HB oder Reaktionspatrone FHB II-P / FHB II-PF	Injektionsr	nörtel FIS HB		
Hammerbohren mit Standard- bohrer		alle G	Größen			
Hammerbohren mit Hohlbohrer	Ť	(25. 81. 2C) 2.504	Größen ster Expert"; ; Hilti "TE-CD, TE-Y	D")		
Diamantbohren		alle Größen (nur mit Reaktionspatrone zulässig)	Leistung n	nicht bewertet		
Statische und quasi-statische	ungerissenen Beton	alle Größen	alle	Größen		
Beanspruchung tung, im	gerissenen Beton	Tabellen: C1.1, C2.1, C3.1, C3.2, C4.1, C5.1, C5.2	Tabellen: C1.1, C2.1, C4.1, C5.2			
Montage- I1 trockener oder nasser Beton		alle G				
Nutzungs- bedingungen I2	wasser- gefülltes Bohrloch	alle Größen (nur mit Reaktionspatrone zulässig)		nicht bewertet		
Seismische Leis kategorie C1 un		Leistung nicht bewertet				
Einbaurichtung		D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage)				
	Vorsteck- montage	alle G	arößen			
Montageart —	Durchsteck- montage	alle Größen				
Einbautemperat	:ur ¹⁾	FIS HB: T _{i,min} = -5 °C bis T _i				
Gebrauchs- temperatur- bereiche	Temperatur- bereich T2		_{,max} = +40 °C ittemperatur +80 °C ittemperatur +50 °C			
1) Für die üb	liche Temperatu	rveränderung nach dem Einbau				
			Abbildun	gen nicht maßstäblic		
fischer Highb	ond-Anker FH	IB II für Diamantbohren / erweiterte	Nutzungsdauer			
Verwendungs	zweck			Anhang B 1		
Spezifikationer	r Teil 1			Anhang 9 / 24		

Spezifizierung des Verwendungszwecks Teil 2

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

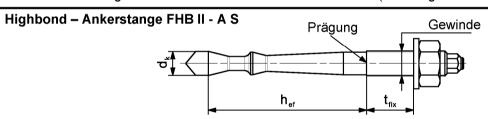
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Für alle anderen Bedingungen gemäß EN1993-1-4: 2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A 6 Tabelle A6.1.

Bemessung

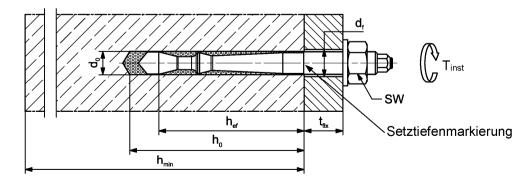
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018

Einbau:


- · Einbau des Dübels durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters
- Überkopfmontage erlaubt (notwendiges Zubehör siehe Montageanleitung)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Tabelle B3.1: Montagekennwerte für Highbond - Ankerstangen FHB II - A S


Ankerstange FHB II - A S	Gew	vinde	M16x95	M20x170	M24x170	
Zugehörige Reaktionspatrone FHB II-P bzw. FHB II-PF		[-]	16x95	20x170	24x170	
Konusdurchmesser	dk		14,5	23	,0	
Schlüsselweite	SW		24	30	36	
Bohrernenndurchmesser	d ₀		16	25	25	
Bohrlochtiefe	h ₀		110	19	0	
Effektive Verankerstiefe	h _{ef}	95	170			
Minimale Rand- und Achsabstände	$_{n} = c_{min}$	[mm]	50	80)	
Durchmesser Vorsteck- des Durch- montage	d _f ≤		18	22	26	
gangslochs im Durchsteck- Anbauteil montage	d _f ≤		18	26	5	
Minimale Dicke des Betonbauteils	h _{min}		150	24	0	
Montagedrehmoment	T _{inst}	[Nm]	50	10	0	
Dicke des Anbauteils t _{fix} ≤				1500		
fischer Verfüllscheibe 1)	≥ d _a [[mm]	38	46	54	
inscrier verruiischeibe 9	t _s		7	8	10	

¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Prägung: Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: M16x95 Bei nichtrostendem Stahl zusätzlich "A4" und bei hochkorrosionsbeständiger Stahl zusätzlich "C". Hochkorrosionsbeständiger Stahl zusätzlich "(" auf der Stirnseite

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Montagekennwerte für Highbond - Ankerstange FHB II - A S

Anhang B 3

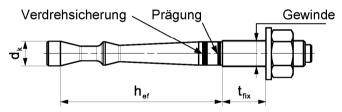
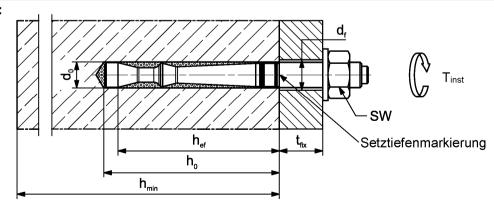

Anhang 11 / 24

Tabelle B4.1: Montagekennwerte für Highbond - Ankerstangen FHB II Inject - A S mit Injektionsmörtel FIS HB


Ankerstange FH	IB II Inject - A S	G	ewinde	M16x95	M20x170	M24x170
Konusdurchmess	ser	dk		14,5	23	3,0
Schlüsselweite		SW		24	30	36
Bohrernenndurch	nmesser	d ₀		16 25		5
Bohrlochtiefe		h ₀		101	176	
Effektive Veranke	erstiefe	h _{ef}		95	17	70
Minimale Rand- und Achsabstände s _{min} = c _{min}		[mm]	50	80		
Durchmesser des Durch-	Vorsteck- montage	d₁≤		18	22	26
gangslochs im Anbauteil	Durchsteck- montage	d₁≤		20	2	6
Minimale Dicke des Betonbauteils h _{min}			150	24	40	
Montagedrehmoment T _{inst}		[Nm]	50	100		
Dicke des Anbauteils t _{fix} ≤			1500			
fischer Verfüllscheibe 1) $\frac{\geq d_a}{t_s}$		≥ da	[mm]	38	46	54
		ts		7	8	10

¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Ankers)

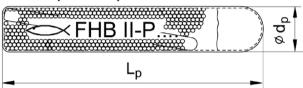
Highbond - Ankerstange FHB II Inject - A S

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck


Montagekennwerte für Highbond - Ankerstange FHB II Inject - A S

Anhang B 4

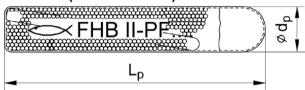

Anhang 12 / 24

Tabelle B5.1: Abmessungen der Reaktionspatronen FHB II-P und FHB II-PF						
Reaktionspatrone			16x95	20x170	24x170	
Patronenlänge L _p []		120	185	185		
Patronendurchmesser Ø dp [mm]			14,5	21	,5	

FHB II-P (standard)

Aufdruck: Werkzeichen, Gewindedurchmesser, Gefahrenhinweis und effektive Verankerstiefe.

z.B.: FHB II-P 16x95 oder

FHB II-PF 16x95

Tabelle B5.2: Kennwerte der Reinigungsbürsten BS (Stahlbürste mit Stahlborsten; nur bei der Anwendung mit Injektionsmörtel oder bei der Anwendung mit Reaktionspatrone im diamantgebohrten Bohrloch)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser do	[mm]	16	25
Stahlbürsten- durchmesser BS	[mm]	20	27

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Abmessungen Reaktionspatrone

Kennwerte der Reinigungsbürsten BS (Stahlbürsten mir Stahlborsten)

Anhang B 5

Anhang 13 / 24

Tabelle B6.1: Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit des Injektionsmörtels FIS HB

Temperatur im Verankerungsgrund ¹⁾ [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ²⁾ t _{cure}
-5 bis 0 ³⁾	-	6 h
> 0 bis 5 ³⁾	-	3 h
> 5 bis 10	15 min	90 min
> 10 bis 20	6 min	35 min
> 20 bis 30	4 min	20 min
> 30 bis 40	2 min	12 min

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

Tabelle B6.2: Minimale Aushärtezeit der Reaktionspatrone FHB II-P und FHB II-PF

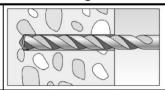
Reaktionspatrone FHB II-P (standard)						
Temperatur im Verankerungsgrund ¹⁾ [°C]	Minimale Aushärtezeit ²⁾					
-5 bis 0	4 h					
> 0 bis 10	45 min					
> 10 bis 20	20 min					
> 20	10 min					

Reaktionspatrone FHB	II-PF (schnell härtend)
Temperatur im Verankerungsgrund 1) [°C]	Minimale Aushärtezeit 2) t _{cure}
-5 bis 0	8 min
> 0 bis 10	6 min
> 10 bis 20	4 min
> 20	2 min

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln


³⁾ Minimal Kartuschentemperatur +5 °C

²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln

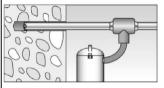
Montageanleitung Teil 1; Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabelle B3.1** Bohrlochreinigung ist nicht notwendig

Mit Schritt 6 fortfahren (Anhang B 8)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe Tabelle B1.1) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

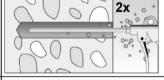
Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1

Mit Schritt 6 fortfahren (Anhang B 8)

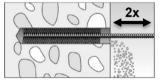
Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)

1

Bohrloch erstellen, Bohrlochdurchmesser d₀ und h₀ siehe **Tabelle B3.1**

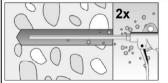

Bohrkern brechen und herausziehen

2


Bohrloch spülen, bis das Wasser klar wird

3

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)


4

Bohrloch zweimal ausbürsten. Entsprechende Bürsten siehe Tabelle B5.2

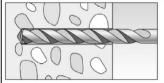
5

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)

Mit Schritt 6 fortfahren (Anhang B 8)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

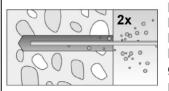
Verwendungszweck Montageanleitung Teil 1 Montage mit Reaktionspatrone FHB II-P oder FHB II-PF Anhang B 7


Anhang 15 / 24

Montageanleitung Teil 2; Montag mit der Reaktionspatrone FHB II-P oder FHB II-PF Montage Highbond-Ankerstange FHB II - A S 6 Reaktionspatrone FHB II-P oder FHB II-PF in das Bohrloch stecken Vorsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten 7 Durchsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein 8 Durchsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein und im Anbauteil sichtbar sein Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer 8a Zentrierkeile) fixieren 9 Aushärtezeit abwarten, tcure siehe Tabelle B6.2 Sechskantmutter mit Montagedrehmoment Tinst anziehen siehe 10 Tabellen B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 8 Verwendungszweck Montageanleitung Teil 2 Anhang 16 / 24 Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Montageanleitung Teil 3; Montage Injektionsmörtel FIS HB

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)


1

Bohrloch erstellen.

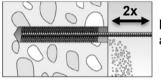
Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe Tabellen B3.1, B4.1

2

Bohrloch reinigen.

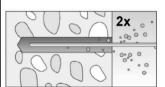
Bohrloch zweimal ausblasen.

Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen.


Für Bohrdurchmesser $d_0 = 16 \text{ mm}$ mit

Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar).

Für Bohrdurchmesser **d**₀ = **25 mm** mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse



3

Bohrloch mit Stahlbürste zweimal ausbürsten. Zugehörige Bürsten siehe **Tabelle 5.2**

4

Bohrloch reinigen.

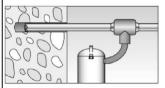
Bohrloch zweimal ausblasen.

Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen.

Für Bohrdurchmesser **d**₀ = **16 mm** mit Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar).

Für Bohrdurchmesser **d**₀ = **25 mm** mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse

Mit Schritt 5 fortfahren (Anhang B 10)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe Tabelle B1.1) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1, B4.1

Mit Schritt 5 fortfahren (Anhang B 10)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

VerwendungszweckMontageanleitung Teil 3
Montage mit Injektionsmörtel FIS HB

Anhang B 9

Anhang 17 / 24

Montageanleitung Teil 4; Montage mit Injektionsmörtel FIS HB

Kartuschenvorbereitung

5

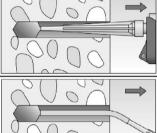
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

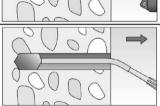
6

Kartusche in das Auspressgerät legen

7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist.


Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Einbringen des Injektionsmörtels

Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

8

Bei Bohrlochtiefen ≥ 170 mm Injektionshilfe verwenden

Mit Schritt 9 fortfahren (Anhang B 11)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck Montageanleitung Teil 4 Montage mit Injektionsmörtel Anhang B 10

Anhang 18 / 24

Montageanleitung Teil 5; Montage mit Injektionsmörtel FIS HB Montage mit Highbond-Ankerstange FHB II - A S oder FHB II Inject - A S Vorsteck- oder Druchsteckmontage: 9 Die Ankerstange mit leichten Drehbewegungen in das Bohrloch bis zum Bohrlochgrund eindrücken. Nur saubere und ölfreie Stahlteile verwenden. Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. 10 Durchsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus der Bohrung des Anbauteils austreten bzw. in der Bohrung des Anbauteils sichtbar sein. Bei Überkopfmontage die Ankerstange 10a mit Keilen fixieren. (z.B. fischer Zentrierkeile) Aushärtezeit abwarten, tcure 11 siehe Tabelle B6.1 12 Sechskantmutter mit Montagedrehmoment Tinst anziehen siehe B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Ankerstange und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 11 Verwendungszweck Montageanleitung Teil 5 Anhang 19 / 24 Montage mit Injektionsmörtel

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstange FHB II - A S und FHB II Inject - A S

Ankerstange FH	B II - A S / FHB II Inject - /	A S	M16x95	M20x170	M24x170
Charakteristisc	her Widerstand gegen S	tahlv	ersagen unter Zugbe	anspruchung	
Charakteris-	Stahl verzinkt		61,6	128	3,5
tischer	Nichtrostender Stahl A4	[kN]			
Widerstand N _{Rk,s}	Hochkorrosions- beständiger Stahl C	[]	61,6	129	3,5
Teilsicherheitsl	beiwerte 1)				
	Stahl verzinkt			1,5 ¹⁾	
Teilsicherheits Beiwert	Nichtrostender Stahl A4	[-]		1,5 ¹⁾	
γMs,N	Hochkorrosions- beständiger Stahl C	[-]		1,5 1)	
Charakteristisc	her Widerstand gegen S	tahlv	ersagen unter Querb	eanspruchung	
Ohne Hebelarm	1				
Charakteris-	Stahl verzinkt		50,8	80,3	114,2
tischer	Nichtrostender Stahl A4	[kN]	62,7	97,9	124,5
Widerstand V ⁰ _{Rk,s}	Hochkorrosions- beständiger Stahl C	[]	62,7	97,9	141
Duktilitätsfaktor	k ₇	[-]		1,0	
Mit Hebelarm					
Charakteris-	Stahl verzinkt		266	519	896
tischer	Nichtrostender Stahl A4	[Nm]			
Widerstand M ⁰ _{Rk,s}	Hochkorrosions- beständiger Stahl C		266	519	896
Teilsicherheitsl	beiwerte 1)				
Teilsicherheitsbe	eiwert γ _{Ms,} ν	[-]		1,25	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Leistung

Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S

Anhang C 1

Anhang 20 / 24

Tabelle C2.1:	Charakteristischer Widerstand gegen Betonversagen unter Zug- / Quer-
	beanspruchung

Ankerstange FHB II - A S / F	HB II Inject -	A S		Alle Größen	
Charakteristischer Widerst	and gegen E	Betonve	ersagen unter Zugbe	eanspruchung	
Montagebeiwert	γinst	[-]	Sic	ehe Anhänge C 3 bis (C 4
Faktoren für Betondruckfes	stigkeiten > 0	C20/25			
	C25/30			1,12	
Erhöhungsfaktor ψc für	C30/37			1,22	
gerissenen oder	C35/45] , [1,32	
ungerissenen Beton	C40/50	[-]		1,41	
$N_{Rk,p} = \psi_c N_{Rk,p} (C20/25)$	C45/55			1,50	
	C50/60			1,58	
Versagen durch Spalten					
Randabstand	C _{cr,sp}	[mm]		2 h _{ef}	
Achsabstand	S cr,sp	[mm]		4 h _{ef}	
Versagen durch Betonaust	oruch				
Ungerissener Beton	$\mathbf{k}_{ucr,N}$	[-]		11,0 ¹⁾	
Gerissener Beton	$k_{\text{cr,N}}$	[-]		7,7 1)	
Randabstand	C _{cr,N}	[mm]		1,5 h _{ef}	
Achsabstand	S cr,N	[[[]]		3 h _{ef}	
Charakteristischer Widerst	and gegen E	etonve	ersagen unter Querb	eanspruchung	
Montagebeiwert	γinst	[-]		1,0	
Betonausbruch auf der las	tabgewandte	n Seite)		
Faktor für Betonausbruch	k 8	[-]		2,0	
Betonkantenausbruch					
Ankerstange FHB II - A S u FHB II Inject - A S	nd		M16x95	M20x170	M24x170
Effektive Länge des Stahlteil unter Querbeanspruchung	s I _f	[mm]	95	17	70

16

 d_{nom}

Rechnerischer Durchmesser

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Leistung

Charakteristischer Widerstand gegen Betonversagen unter Zug- / Querbeanspruchung

Anhang C 2

25

¹⁾ Bezogen auf Betonzylinderdruckfestigkeit

Tabelle C3.1:	Highbon	d-Anker	stange	U U	agen durch Hera der Reaktionspatro loch; 50 Jahre	
Highbond-Anke	rstange FHB	II - A S 1)		M16x95	M20x170	M24x170
Charakteristisc	her Widerstar	nd gegen	Versag	en durch Herauszieh	ien	
Rechnerischer D	urchmesser	d	[mm]	16	2	25
Ungerissener B	eton					
Charakteristisc	her Widerstar	nd im ung	jerisser	en Beton C20/25		
Diamantbohren (trockener ode	<u>r nasser E</u>	Beton / w	vassergefülltes Bohrlo	<u>ch)</u>	
Temperatur- bereich T2	50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	51,5	11	8,5
Gerissener Bete	on					
Charakteristisc	her Widerstar	nd im geri	issenen	Beton C20/25		
Diamantbohren (trockener ode	<u>r nasser E</u>	Beton / w	vassergefülltes Bohrlo	<u>ch)</u>	
Temperatur- bereich T2	50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	42,8	10	1,4
Montagebeiwer	te					
Trockener oder n	asser Beton		r 1		1,2	
Wassergefülltes E	Bohrloch	γinst	[-]		1,2	
1) Highbond-A	Ankerstange F	HB II - A S	S mit Re	aktionspatrone FHB II	I-P / FHB II-PF	
Highbond-Anke	rstange FHB	II - A S ¹⁾		M16x95	M20x170	M24x170
				en durch Herauszieh	T	
Rechnerischer D		d	[mm]	16	2	25
Ungerissener B			_			
				nen Beton C20/25		
	trockener ode	r nasser E	Beton / w	vassergefülltes Bohrlo	<u>ch)</u> ⊤	
Temperatur- bereich T2	0°C/80°C	NRk,p,ucr,100	[kN]	51,5	11	8,5
Gerissener Bete	on					
Charakteristisc						
	trockener ode	<u>r nasser E</u>	Beton / w	vassergefülltes Bohrlo	ch)	
Temperatur- bereich T2	°C / 80 °C	N _{Rk,p,cr,100}	[kN]	36,0	86	5,0
Montagebeiwer	te					
Trockener oder n		γinst	[-]		1,2	
Wassergefülltes E	Bohrloch	1 III St	"1		1,2	
1) Highbond-A	Ankerstange F	HB II - A S	S mit de	r Reaktionspatrone FF	HB II-P / FHB II-PF	
fischer Highbo	ond-Anker F	HB II für	Diama	ntbohren / erweiter	te Nutzungsdauer	
Leistung						

Tabelle C4.1: Charakteristischer Widerstand gegen Versagen durch Herausziehen der Highbond-Ankerstange FHB II - A S mit der Reaktionspatrone FHB II-P / FHB II-PF oder dem Injektionsmörtel FIS HB und Highbond-Ankerstange FHB II Inject - A S mit Injektionsmörtel FIS HB im hammergebohrten Bohrloch; 100 Jahre

Highbond-Ankerstange FHB II - A S Highbond-Ankerstange FHB II Inject		M16x95	M20x170	M24x170
Charakteristischer Widerstand gege	n Versag	en durch Herauszieh	en	
Rechnerischer Durchmesser d	[mm]	16	2	:5
Ungerissener Beton				
Charakteristischer Widerstand im u	ngerisseı	nen Beton C20/25		
Hammerbohren mit Standard- oder Ho	hlbohrer (trockener oder nasser	Beton / wassergefüllte	es Bohrloch)
Temperatur- bereich T2 50 °C / 80 °C NRk,p,ucr,1	00 [kN]	52,4	11	8,5
Gerissener Beton				
Charakteristischer Widerstand im g	erissener	n Beton C20/25		
Hammerbohren mit Standard- oder Ho	hlbohrer (trockener oder nasser	Beton / wassergefüllte	es Bohrloch)
Temperatur- bereich T2 50 °C / 80 °C NRk,p,cr,11	00 [kN]	36,0	86	3,0
Montagebeiwerte				
Trockener oder nasser Beton	.,		1,0	
Wassergefülltes Bohrloch (nur mit Reaktionspatrone)	[-]		1,0	
1) Highbond-Ankerstange FHB II - A	S Reakt	ionspatrone FHB II-P /	FHB II-PF oder	

¹⁾ Highbond-Ankerstange FHB II - A S Reaktionspatrone FHB II-P / FHB II-PF oder Injektionsmörtel FIS HB

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Leistung

Charakteristischer Widerstand gegen Versagen durch Herausziehen der Highbond-Ankerstange FHB II - A S / FHB II Inject - A S (Hammerbohren); 100 Jahre

Anhang C 4

Anhang 23 / 24

²⁾ Highbond-Ankerstange FHB II Inject - A S mit Injektionsmörtel FIS HB

Highbond-A FHB II – A S	nkerstange	M16x95	M20x170		M24x170
Verschiebur	ngs-Faktoren ur	ter Zugbeanspruchung ´	1)		
		eraturbereich T2			
δ N0-Faktor		0,030	0,020		0,016
 δN∞-Faktor	[mm/kN]	0,120	0,045		0,045
Gerissener l	Beton; Tempera	turbereich T2	· · · · · · · · · · · · · · · · · · ·		·
δ N0-Faktor	- 4 - 17	0,030	0,020		0,016
δN∞-Faktor	[mm/kN]	0,120	0,045		0,045
Verschiebur	ngs-Faktoren ur	nter Querbeanspruchung	1 ²⁾		
		ner Beton; Temperaturbe			
SV0-Faktor		0,02	0,02		0,02
δV∞-Faktor	[mm/kN]	0,03	0,03		0,03
	ng der effektiven	· · · · · · · · · · · · · · · · · · ·	2) Berechnung der effektive	an Verse	·
$\delta_{N0} = \delta_{N0-F}$	_	verschiebung.	$\delta_{V0} = \delta_{V0-Faktor} \cdot V$	en versc	illebuilg.
$\delta_{N\infty} = \delta_{N\infty-F}$			$\delta_{V\infty} = \delta_{V\infty-Faktor} \cdot V$		
	ғактог Т Т :kende Zugbeans	enruchung	V = einwirkende Querbe	ansnruc	huna
	FHB II Ir	ebungen für Highbon nject - A S; 100 Jahre	nd-Ankerstangen FHB	II - A S	und
Highbond-A FHB II – A S	FHB II Ir			II - A S	und M24x170
Highbond-A FHB II – A S FHB II Inject	FHB II Ir Inkerstangen I / - A S	nject - A S; 100 Jahre	M20x170	II - A S	
Highbond-A FHB II – A S FHB II Inject Verschiebur	FHB II Ir nkerstangen i / - A S ngs-Faktoren ur	nject - A S; 100 Jahre M16x95	M20x170	II - A S	
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissen	FHB II Ir Inkerstangen I / - A S Ings-Faktoren ur er Beton; Tempo	nject - A S; 100 Jahre M16x95 nter Zugbeanspruchung	M20x170	II - A S	
Highbond-A FHB II – A S FHB II Inject Verschiebui Ungerissend	FHB II Ir nkerstangen i / - A S ngs-Faktoren ur	M16x95 Meraturbereich T2	M20x170	II - A S	M24x170
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor	FHB II Ir Inkerstangen I / - A S Ings-Faktoren ur er Beton; Tempo	M16x95 Meret - A S; 100 Jahre M16x95 Meret Zugbeanspruchung Mereturbereich T2 0,030 0,120	M20x170	II - A S	M24x170 0,016
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor δΝο-Faktor Gerissener	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur er Beton; Temper [mm/kN] Beton; Tempera	M16x95 Meret - A S; 100 Jahre M16x95 Meret Zugbeanspruchung Mereturbereich T2 0,030 0,120	M20x170	II - A S	M24x170 0,016
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend ŠN0-Faktor Gerissener	FHB II Ir Inkerstangen I / - A S Ings-Faktoren ur er Beton; Temper	M16x95 M16x95 Mer Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2	M20x170 0,020 0,045	II - A S	M24x170 0,016 0,045
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor Gerissener δΝο-Faktor	FHB II Ir Inkerstangen - A S Ings-Faktoren ur er Beton; Temper [mm/kN] Beton; Tempera	M16x95 M16x95 Meret - A S; 100 Jahre M16x95 Meret Zugbeanspruchung Peraturbereich T2 0,030 0,120 Maturbereich T2 0,030	0,020 0,045 0,045	II - A S	0,016 0,045 0,016
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor Gerissener δΝο-Faktor δΝο-Faktor	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur I mm/kN] Beton; Tempera I mm/kN] I mm/kN]	M16x95 M16x95 Mer Zugbeanspruchung eraturbereich T2 0,030 0,120 turbereich T2 0,030 0,120	0,020 0,045 0,045	II - A S	0,016 0,045 0,016
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor Gerissener δΝο-Faktor Verschiebur Ungerissend	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Imgs-Faktoren ur Imgs-Faktoren ur Imgs-Faktoren ur Imgs-Faktoren ur	M16x95 M16x95 Meret - A S; 100 Jahre M16x95 Meret Zugbeanspruchung Peraturbereich T2 0,030 0,120 Meret Cuerbeanspruchung Meret Cuerbeanspruchung Meret Cuerbeanspruchung	0,020 0,045 0,045	II - A S	0,016 0,045 0,016
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene ŠNo-Faktor SNo-Faktor Verschiebur Ungerissene	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur I mm/kN] Beton; Tempera I mm/kN] I mm/kN]	M16x95 M16x95 Mer Zugbeanspruchung eraturbereich T2 0,030 0,120 Maturbereich T2 Maturbereich T2 Maturbereich T2	M20x170 0,020 0,045 0,020 0,045 2) Preich T2	II - A S	0,016 0,045 0,016 0,045
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene ŠNO-Faktor Gerissener ŠNO-Faktor Verschiebur Ungerissener Verschiebur Ungerissener	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Imgs-Faktoren ur Imgs-Faktoren ur Imgs-Faktoren ur Imgs-Faktoren ur	M16x95 M16x95	0,020 0,045 0,045 0,045 0,045 0,020 0,045 0,020		0,016 0,045 0,045 0,045 0,02 0,03
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene ŠNO-Faktor Gerissener ŠNO-Faktor Verschiebur Ungerissener Verschiebur Ungerissener	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Er Beton; Tempera [mm/kN] Beton; Tempera [mm/kN] Ings-Faktoren ur Er oder gerisser [mm/kN]	M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 122) Preich T2 0,02 0,03		0,016 0,045 0,045 0,045 0,02 0,03
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene \[\delta_No_Faktor \] \[\delta_No_Faktor \] \[\delta_No_Faktor \] \[\delta_Verschiebur Ungerissene \[\delta_Vo_Faktor \] \[\delta_Vo_Fakt	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Ings-Faktoren ur Imm/kN] Ings-Faktoren ur Imm/kN] Ings-Faktoren ur Imm/kN] Ing der effektiven Ingaktor · N	M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 2) ereich T2 0,02 0,03 2) Berechnung der effektive		0,016 0,045 0,045 0,045 0,02 0,03
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene δNο-Faktor δΝο-Faktor Verschiebur Ungerissene δνο-Faktor Verschiebur Ungerissene δνο-Faktor δνο-Faktor δνο-Faktor 1) Berechnur δνο = δνο-F	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Ings-Faktoren ur Imm/kN] Ings-Faktoren ur Imm/kN] Ings-Faktoren ur Imm/kN] Ing der effektiven Ingaktor · N	M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 12) Preich T2 0,02 0,03 2) Berechnung der effektive δν0 = δν0-Faktor · V	en Versc	0,016 0,045 0,045 0,045 0,02 0,03 chiebung:
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene δΝο-Faktor Gerissener δΝο-Faktor Verschiebur Ungerissene δνο-Faktor Σνο-Faktor 1) Berechnur δΝο = δΝο-F	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Ings-Faktoren ur Imm/kN] Ings-Faktoren ur Imm/kN] Ing der effektiven Ingktor · N Ingktor · N	M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 10 0,020 0,045 20 Preich T2 0,02 0,03 2) Berechnung der effektive $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$	en Versc	0,016 0,045 0,045 0,045 0,02 0,03 chiebung:
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissend δΝο-Faktor Gerissener δΝω-Faktor Verschiebur Ungerissend δνο-Faktor Verschiebur Ungerissend δνο-Faktor 1) Berechnur δνω = δνω-F δνω = δνω-F Ν = einwir	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Ings-Faktoren ur Imm/kN] Ing der effektiven Imm/kN] Ing der effektiven Imm/kN] Ing der effektiven Imm/kN]	M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 2) Preich T2 0,02 0,03 2) Berechnung der effektive $\delta_{V0} = \delta_{V0-Faktor} \cdot V$ $\delta_{V\infty} = \delta_{V\infty-Faktor} \cdot V$ $V = \text{einwirkende Querbe}$	en Versc	0,016 0,045 0,045 0,045 0,02 0,03 chiebung:
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene δΝο-Faktor Θerissener δΝο-Faktor Verschiebur Ungerissene δνο-Faktor 1) Berechnur δνω-Faktor 1) Bereinur δνω = δνω-F Ν = einwir	FHB II Ir Inkerstangen I - A S Ings-Faktoren ur Imm/kN] Beton; Tempera Imm/kN] Ings-Faktoren ur Imm/kN] Ing der effektiven Imm/kN] Ing der effektiven Imm/kN] Ing der effektiven Imm/kN]	M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 10 0,020 0,045 20 Preich T2 0,02 0,03 2) Berechnung der effektive $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$	en Versc	0,016 0,045 0,016 0,045 0,02 0,03 chiebung:
Highbond-A FHB II – A S FHB II Inject Verschiebur Ungerissene δΝο-Faktor δΝω-Faktor Verschiebur Ungerissene δνο-Faktor 1) Berechnur δνω-Faktor 1) Berechnur δνω- Faktor N = δνω- F Ν = einwir fischer Hig	FHB II Ir Inkerstangen I / - A S Ings-Faktoren ur Ings-Faktoren ur Ings-Faktoren ur Ings-Faktoren ur Ing der effektiven Ing der effektiven Ingkor · N Ingk	M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95 M16x95	M20x170 0,020 0,045 0,020 0,045 2) Preich T2 0,02 0,03 2) Berechnung der effektive δν0 = δν0-Faktor · V δν∞ = δν∞-Faktor · V V = einwirkende Querbe	en Versc	0,016 0,045 0,045 0,045 0,02 0,03 chiebung: