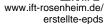
Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-KTO-17.0

OBO Bettermann Produktion Deutschland GmbH & Co. KG

Kabeltragsysteme

Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme


Grundlagen:

DIN EN ISO 14025 EN 15804 + A2 Firmen-EPD Environmental

Product Declaration

Veröffentlichungsdatum: 10.07.2024 Gültig bis: 10.07.2029

Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-KTO-17.0

Deklarationsnumme	ii. EPD-r	10-17.0			
Programmbetreiber	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 D-83026 Rosenheim				
Ökobilanzierer	Life Cycle Engineering Experts GmbH Birkenweg 24 D-64295 Darmstadt				
Deklarationsinhaber	OBO Bettermann Produktion Deutschland GmbH & Co. KG Hüingser Ring 52 D-58710 Menden www.obo.de Hinweis: zusätzliche Deklarationsinhaber sind auf Seite 3 zu finden.				
Deklarationsnummer	EPD-KTC	-17.0			
Bezeichnung des deklarierten Produktes	Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme				
Anwendungsbereich	Die Kabeltragsysteme werden zur sicheren Führung von Kabeln und Leitungen eingesetzt.				
Grundlage	Diese EPD wurde auf Basis der EN ISO 14025:2011 und der DIN EN 15804:2012+A2:2019 erstellt. Zusätzlich gilt der allgemeine Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Die Deklaration beruht auf den PCR Dokumenten "PCR Teil A" PCR-A-1.0:2023 und " Führungssysteme für Kabel und Leitungen" PCR-KTS-2.0:2021.				
Gültigkeit	Veröffentlichungsdatum: 10.07.2024 Letzte Überarbeitung: 10.07.2024 Gültig bis: 10.07.2029 Diese verifizierte Firmen-Umweltproduktdeklaration gilt ausschließlich für die genannten Produkte und hat eine Gültigkeit von fünf Jahren ab dem				
Rahmen der Ökobilanz	Veröffentlichungsdatum gemäß DIN EN 15804. Die Ökobilanz wurde gemäß DIN EN ISO 14040 und DIN EN ISO 14044 erstellt. Als Datenbasis wurden die erhobenen Daten der Produktionswerke der Firma OBO Bettermann Produktion Deutschland GmbH & Co. KG und OBO Bettermann Kft in 2347 Bugyi Magyarorszag (Ungarn) herangezogen sowie generische Daten der Datenbank "LCA for Experts 10". Die Ökobilanz wurde über den betrachteten Lebenszyklus "von der Wiege bis zur Werkstor" (cradle to gate) unter zusätzlicher Berücksichtigung sämtlicher Vorketten wie bspw. Rohstoffgewinnung berechnet.				
Hinweise	Es gelten die "Bedingungen und Hinweise zur Verwendung von ift Prüfdokumentationen". Der Deklarationsinhaber haftet vollumfänglich für die zugrundeliegenden Angaben und Nachweise.				
Mellel		T. Mie	lahe	Zwid	>
Christoph Seehauser		Dr. Torsten Mie	lecke	Vivien Zwick	(

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 3

Produktgruppe: Kabeltragsysteme

Zusätzliche Deklarationsinhaber:

OBO Bettermann Kft
 Alsóráda 2
 2347 Bugyi, Magyarország (Ungarn)

1 Allgemeine Produktinformationen

Produktdefinition

Die EPD gehört zur Produktgruppe Kabeltragsysteme und ist gültig für:

1 Ifm Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsystem der Firma OBO Bettermann Produktion Deutschland GmbH & Co. KG

Die deklarierte Einheit ergibt sich wie folgt:

Bezeichnung	Deklarierte Einheit	Rinne / Leiter	Stiele	Ausleger	Längenge- wicht
Kabelrinnen- system	1 lfm	12,51 kg	18,33 kg	11,53 kg	42,37 kg/lfm
Gitterrinnen- system	1 lfm	6,42 kg	18,33 kg	11,53 kg	36,27 kg/lfm
Kabelleiter- system	1 lfm	7,58 kg	18,33 kg	11,53 kg	37,43 kg/lfm
Weitspann- system	1 lfm	13,80 kg	18,33 kg	11,53 kg	43,66 kg/lfm

Tabelle 1: Produktgruppen

Die durchschnittliche Einheit wird folgendermaßen deklariert:

Direkt genutzte Stoffströme konnten auf die deklarierte Einheit zugeordnet werden. Alle weiteren In- und Outputs bei der Herstellung werden in ihrer Gesamtheit auf die deklarierte Einheit zugeordnet, da keine typische funktionelle Einheit aufgrund der hohen Variantenvielfalt vorhanden ist. Der Bezugszeitraum ist das Jahr 2022, mit Ausnahme der Gitterrinnensystemen. Für diese wurde das Jahr 2019 als Bezugsjahr ausgewählt, da das Worst-case Produkt im Jahr 2022 nicht produziert wurde. Um es mit abbilden zu können wurde für die Gitterrinnensysteme ein anderes Referenzjahr ausgewählt.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 4

Produktgruppe: Kabeltragsysteme

Die Gültigkeit der EPD beschränkt sich auf die folgenden Baureihen (die bilanzierten Worst-case-Produkte sind in den nachfolgenden Tabellen rot markiert:

Kabelrinnensysteme			
Тур	Höhen [mm]	Breiten [mm]	Materialien
RKSM	35, 60	100 - 600	FS, FT, A2, A4
RKS	35, 60	50, 75	FS, FT
LKS	60	100 - 400	FS
MKS	35, 60, 85, 110	100 - 600	FS, FT, A2
MKSU	60, 85	50 - 600	FS, FT
MKSM	60, 85, 110	100 - 600	FS, FT, A2
MKSMU	60, 85, 110	100 - 600	FS, FT, A2
SKS	60, 85, 110	50 - 600	FS, FT, A2, A4
SKSM	60, 85, 110	100 - 600	FS, FT, A2, A4
SKSMU	60, 85, 110	100 - 600	FS, FT, A2
SKSU	60, 110	100 - 600	FS, FT
EKS	60	100 - 900	FS, FT
EKSU	60	100 - 600	FT
DKS	60, 85	100 - 600	FS, FT
IKS	60	100 - 400	FS
BKRS	100, 110	100 - 600	FS
AZK	50	50 - 300	FS, FT, A2, A4
LTR	60	70	FS, FT
LTS	50	50 - 100	FS, FT

Gitterrinnensysteme				
Тур	Höhen [mm]	Breiten [mm]	Materialien	
GR	35, 55, 105	100 - 600	G, FT, A2	
GRM	35, 55, 105	50 - 600	G, FT, A2, A4	
G-GRM	50, 75, 125, 150	50 - 100	G, FT, A2, A4	
SGR	55, 105, <mark>155</mark>	100 - 600	G, FT, A2	
CGR	50	50 - 400	FT, A2	
LTG	80	100	A2	

Kabelleitersysteme			
Тур	Höhen [mm]	Breiten [mm]	Materialien
LG	60, 110	200 - 600	FS, FT, A2, A4
LCIS	60, 110	100 - 600	FS, FT, A2, A4
SLCS	110	200 – 1200	FT
		(900)	
SLL	45, 60	200 - 600	FS, FT
SLM	50	200 - 1200	FT

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 5

Produktgruppe: Kabeltragsysteme

Weitspannsysteme			
Тур	Höhen [mm]	Breiten [mm]	Materialien
WKSG	110, <mark>160</mark>	200 - 600	FS, FT, A2
WKLG	110, 160, 200	200 - 600	FS, FT, A2, A4
WKL	200	200 - 600	FT

Montagesysteme - Ausleger			
Тур	Länge [mm]	Materialien	
MWA 12	110 - 410	FS, A2, A4	
MWAG 12	110 - 410	FS, A2, A4	
AW 15	110 - 610	FT, A2, A4	
AW 30	110 - 710	FT, A2, A4	
AW 55	210 - 1010	FT, A2, A4	
AW 80	210 - 810	FT	
AWG 15	110 - 610	FT, A2, A4	
AW 15 2L	110 - 610	FT	
AWV	210 - 610	FT	
AS 15	110 - 610	FT	
AS 30	110 - 710	FT	
AS 55	210 - 1010	FT	
AWSS	210 - <mark>1010</mark>	FT, A2, A4	
TPSA	145 - 395	FS, FT, A2	
TPSAG	145 - 345	FS, FT, A2	

Montagesysteme - Stiele			
Тур	Längen [mm]	Materialien	
US 3 K	200 - 1200	FT, A2, A4	
US 5 K	150 - 1200	FT, A2, A4	
US 7 K	200 - 3000	FT, A2, A4	
IS 8 K	200 - 3000	FT	

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 6

Produktgruppe: Kabeltragsysteme

Produktbeschreibung

Kabelrinnensysteme:

Tragkonstruktion für Kabel und elektrische Leitungen aus Blech, häufig gelocht oder geschlitzt und abgekantet.

Je nach Typ und Anwendung verfügbar in den Seitenhöhen 35, 50, 60, 85, 100 und 110 für Stützabstände bis zu 4m.

Erhältlich in den Materialien Stahl und Edelstahl mit den Oberflächen Bandverzinkt oder Tauchfeuerverzinkt.

Dank der unterschiedlichen Materialien und Oberflächenausführungen können sämtliche Anwendungsfälle und Atmosphären abgedeckt werden.

Gitterrinnensysteme:

Tragkonstruktion für Kabel und elektrische Leitungen aus verschweißten Drähten.

Je nach Typ und Anwendung verfügbar in den Seitenhöhen 35, 50, 55, 75, 105, 125, 150 und 155mm für Stützabstände bis zu 4m.

Erhältlich in den Materialien Stahl und Edelstahl mit den Oberflächen galvanisch verzinkt und Tauchfeuerverzinkt.

Dank der unterschiedlichen Materialien und Oberflächenausführungen können sämtliche Anwendungsfälle und Atmosphären abgedeckt werden.

Kabelleitersystem:

Tragkonstruktion für Kabel und elektrische Leitungen, in der Regel aus Stahloder Edelstahlblech, bestehend aus zwei Holmen mit Sprossen, geschweißt oder genietet. Die einzelnen Bauteile sind häufig gelocht oder geschlitzt und abgekantet.

Je nach Typ und Anwendung verfügbar in den Seitenhöhen 45, 50, 60 und 110mm für Stützabstände bis zu 6m. Erhältlich in den Materialien Stahl und Edelstahl mit den Oberflächen Bandverzinkt oder Tauchfeuerverzinkt. Dank der unterschiedlichen Materialien und Oberflächenausführungen können sämtliche Anwendungsfälle und Atmosphären abgedeckt werden.

Weitspannsysteme:

Tragkonstruktion für Kabel und elektrische Leitungen, in der Regel aus Stahloder Edelstahlblech, bestehend aus zwei Holmen mit Sprossen oder zwei Holmen und Bodenblech, die einzelnen Bauteile sind häufig gelocht oder geschlitzt und abgekantet.

Je nach Typ und Anwendung verfügbar in den Seitenhöhen 110, 160 und 200mm für große Stützabstände bis zu 10m. Erhältlich in den Materialien Stahl und Edelstahl mit den Oberflächen Bandverzinkt oder Tauchfeuerverzinkt. Dank der unterschiedlichen Materialien und Oberflächenausführungen können sämtliche Anwendungsfälle und Atmosphären abgedeckt werden.

Für eine detaillierte Produktbeschreibung sind die Herstellerangaben unter www.obo-bettermann.com oder die Produktbeschreibungen des jeweiligen Angebots zu beachten.

Seite 7

Produktgruppe: Kabeltragsysteme

Produktherstellung

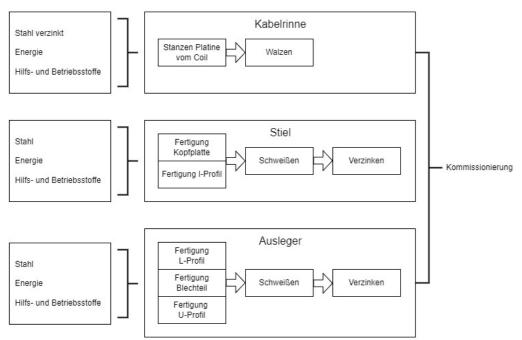
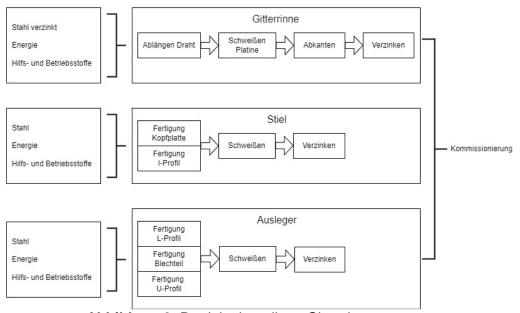



Abbildung 1: Produktherstellung: Kabelrinnensystem

Abbildung 2: Produktehrstellung Gitterrinnensystem

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 8

Produktgruppe: Kabeltragsysteme

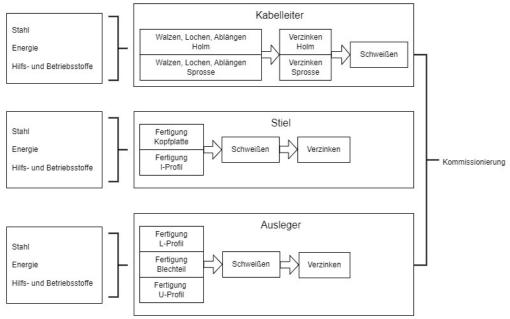


Abbildung 3: Produktherstellung: Kabelleitersystem

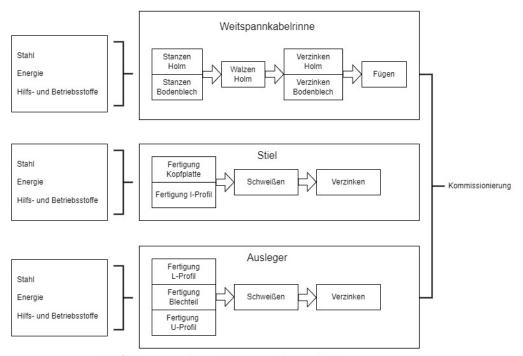


Abbildung 4: Produktherstellung: Weitspannsystem

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 9

Produktgruppe: Kabeltragsysteme

Anwendung Die Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme

werden zur sicheren Führung von Kabeln und Leitungen bei Elektroinstallationen in verschiedene Industrie- und Privaten Sektoren

eingesetzt.

Managementsysteme Folgende Managementsysteme sind vorhanden:

Qualitätsmanagementsystem nach DIN EN ISO 9001:2015

Umweltmanagementsystem nach DIN EN ISO 14001:2015

Zusätzliche Informationen Die zusätzlichen Verwendbarkeits- oder Übereinstimmungsnachweise

sind, falls zutreffend, der CE-Kennzeichnung und den Begleit-

dokumenten zu entnehmen.

2 Verwendete Materialien

Grundstoffe Die verwendeten Grundstoffe sind Kapitel 6.2 Sachbilanz zu entnehmen.

Deklarationspflichtige Stoffe Es sind keine Stoffe gemäß REACH Kandidatenliste enthalten:

Kabelrinnensysteme: Deklaration vom 29. Juni 2022 Gitterrinnensysteme: Deklaration vom 13. August 2021 Kabelleitersysteme: Deklaration vom 11. September 2023 Weitspannkabelrinne: Deklaration vom 13. Oktober 2021

Stiel: Deklaration vom 06. Dezember 2021 Ausleger: Deklaration vom 13. Oktober 2021

Alle relevanten Sicherheitsdatenblätter können bei der Firma OBO Bettermann Produktion Deutschland GmbH & Co. KG bezogen werden.

3 Baustadium

Verarbeitungsempfehlungen Einbau Es ist die Anleitung für Montage, Betrieb, Wartung und Demontage des

Herstellers zu beachten. Siehe hierzu www.obo.de

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 10

Produktgruppe: Kabeltragsysteme

4 Nutzungsstadium

Emissionen an die Umwelt

Es sind keine Emissionen in die Innenraumluft, Wasser und Boden bekannt. Es entstehen ggf. VOC-Emissionen.

Referenz-Nutzungsdauer (RSL)

Die RSL-Informationen stammen vom Hersteller. Die RSL muss unter festgelegten Referenz-Nutzungsbedingungen festgelegt werden und sich auf die deklarierte technische und funktionale Qualität des Produkts im Gebäude beziehen. Sie muss allen in Europäischen Produktnormen angegebenen spezifischen Regeln entsprechend festgelegt werden oder, wenn keine verfügbar sind, entsprechend einer c-PCR. Zudem muss sie ISO 15686-1, -2, -7 und -8 berücksichtigen. Wenn eine Anleitung zur Ableitung von RSL aus Europäischen Produktnormen oder einer c-PCR vorliegt, dann muss eine solche Anleitung Vorrang haben. Kann die Nutzungsdauer nicht als RSL nach ISO 15686 ermittelt werden, kann auf die BBSR-Tabelle "Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach BNB" zurückgegriffen werden. Weitere Informationen und Erläuterungen sind unter www.nachhaltigesbauen.de zu beziehen.

Für diese EPD gilt:

Für eine "von der Wiege bis zum Werkstor"-EPD mit den Modulen C1-C4 und Modul D (A1-A3 + C + D) kann keine Referenz-Nutzungsdauer (RSL) ausgewiesen werden, da keine Referenz-Nutzungsbedingungen angegeben werden.

Die Referenz-Nutzungsdauer (RSL) der Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme der Firma OBO Bettermann Produktion Deutschland GmbH & Co. KG wird nicht spezifiziert.

5 Nachnutzungsstadium

Nachnutzungsmöglichkeiten

Die Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme werden zentralen Sammelstellen zugeführt. Dort werden die Produkte in der Regel geschreddert und sortenrein getrennt. Die Nachnutzung ist abhängig vom Standort, an dem die Produkte verwendet werden und somit abhängig von lokalen Bestimmungen. Die vor Ort geltenden Vorschriften sind zu berücksichtigen.

In dieser EPD sind die Module der Nachnutzung entsprechend der Marktsituation dargestellt.

Stahl wird zu bestimmten Teilen recycelt. Restfraktionen werden deponiert.

Entsorgungswege

Die durchschnittlichen Entsorgungswege wurden in der Bilanz berücksichtigt.

Alle Lebenszyklusszenarien sind im Anhang detailliert beschrieben.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 11

Produktgruppe: Kabeltragsysteme

6 Ökobilanz

Basis von Umweltproduktdeklarationen sind Ökobilanzen, in denen über Stoffund Energieflüsse die Umweltwirkungen berechnet und anschließend dargestellt werden.

Als Basis dafür wurden für Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme Ökobilanzen erstellt. Diese entsprechen den Anforderungen gemäß der DIN EN 15804 und den internationalen Normen DIN EN ISO 14040, DIN EN ISO 14044 und EN ISO 14025 sowie in Anlehnung der ISO 21930.

Die Ökobilanz ist repräsentativ für die in der Deklaration dargestellten Produkte und den angegebenen Bezugsraum.

6.1 Festlegung des Ziels und Untersuchungsrahmens

Ziel

Die Ökobilanz dient zur Darstellung der Umweltwirkungen der Produkte. Die Umweltwirkungen werden gemäß DIN EN 15804 als Basisinformation für diese Umweltproduktdeklaration über den betrachteten Lebenszyklus dargestellt. Darüber hinaus werden keine weiteren Umweltwirkungen angegeben.

Datenqualität und Verfügbarkeit sowie geographische und zeitliche Systemgrenzen Die spezifischen Daten stammen ausschließlich aus dem Geschäftsjahr 2022 (Ausnahme bildet das Gitterrinnensystem, diese stammen aus dem Jahr 2019). Diese werden im Werk der OBO Bettermann Produktion Deutschland GmbH in 58710 Menden sowie OBO Bettermann Kft in 2347 Bugyi Magyarorszag (Ungarn) erfasst und stammen teilweise aus Geschäftsbüchern und teilweise aus direkt abgelesenen Messwerten.

Generische Daten stammen aus der Professional Datenbank und Baustoff Datenbank der Software "LCA for Experts 10". Beide Datenbanken wurden zuletzt 2023 aktualisiert. Ältere Daten stammen ebenfalls aus dieser Datenbank und sind nicht älter als zehn Jahre. Es wurden keine weiteren generischen Daten für die Berechnung verwendet.

Generische Daten werden hinsichtlich des geographischen Bezugs so genau wie möglich ausgewählt. Sind keine länderspezifischen Datensätze verfügbar oder kann der regionale Bezug nicht bestimmt werden, werden europäische oder weltweit gültige Datensätze verwendet.

Datenlücken wurden entweder durch vergleichbare Daten oder konservative Annahmen ersetzt oder unter Beachtung der 1 %-Regel abgeschnitten.

Zur Modellierung des Lebenszyklus wurde das Software-System zur ganzheitlichen Bilanzierung "LCA for Experts" eingesetzt.

Die Datenqualität entspricht den Anforderungen aus prEN15941:2022.

Untersuchungsrahmen/ Systemgrenzen Die Systemgrenzen beziehen sich auf die Beschaffung von Rohstoffen und Zukaufteilen, die Herstellung und die Nachnutzung der Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 12

Produktgruppe: Kabeltragsysteme

Es wurden keine zusätzlichen Daten von Vorlieferanten bzw. anderer Standorte berücksichtigt.

Abschneidekriterien

Es wurden alle Daten aus der Betriebsdatenerhebung, d.h. alle verwendeten Eingangs- und Ausgangsstoffe, die eingesetzte thermische Energie sowie der Stromverbrauch berücksichtigt.

Die Grenzen beschränken sich jedoch auf die produktionsrelevanten Daten. Gebäude- bzw. Anlagenteile, die nicht für die Produktherstellung relevant sind, wurden ausgeschlossen.

Die Verpackungsmaterialien wurden unter Wahrung der 1%-Regel abgeschnitten.

Der Transportweg der Rohstoffe wurde berücksichtigt. Transportstrecken für Abfälle und Hilfsstoffe wurden nicht berücksichtigt.

Die Kriterien für eine Nichtbetrachtung von Inputs und Outputs nach DIN EN 15804 werden eingehalten. Aufgrund der Datenanalyse kann davon ausgegangen werden, dass die vernachlässigten Prozesse pro Lebenszyklusstadium 1 % der Masse bzw. der Primärenergie nicht übersteigt. In der Summe werden für die vernachlässigten Prozesse 5 % des Energie- und Masseeinsatzes eingehalten. Für die Berechnung der Ökobilanz wurden auch Stoff- und Energieströme kleiner 1 % berücksichtigt.

6.2 Sachbilanz

Ziel

In der Folge werden sämtliche Stoff- und Energieströme beschrieben. Die erfassten Prozesse werden als Input- und Outputgrößen dargestellt und beziehen sich auf die deklarierte Einheit.

Lebenszyklusphasen

Der gesamte Lebenszyklus der Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme ist im Anhang dargestellt. Es werden die "Herstellungsphase" (A1 – A3), die "Entsorgungphase" (C1 – C4) und die "Vorteile und Belastungen außerhalb der Systemgrenzen" (D) berücksichtigt.

Gutschriften

Folgende Gutschriften werden gemäß DIN EN 15804 angegeben:

· Gutschriften aus Recycling

Allokationen von Co-Produkten

Bei der Herstellung treten keine Allokationen auf.

Allokationen für Wiederverwertung, Recycling und Rückgewinnung

Sollten die Produkte bei der Herstellung (Ausschussteile) wiederverwertet bzw. recycelt und rückgewonnen werden, so werden die Elemente sofern erforderlich geschreddert und anschließend nach Einzelmaterialien getrennt. Dies geschieht durch verschiedene verfahrenstechnische Anlagen wie beispielsweise Magnetabscheider.

Die Systemgrenzen wurden nach der Entsorgung gezogen, wo das Ende ihrer Abfalleigenschaften erreicht wurde.

Allokationen über Lebenszyklusgrenzen

Bei der Verwendung der Recyclingmaterialien in der Herstellung wurde die heutige marktspezifische Situation angesetzt.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 13

Produktgruppe: Kabeltragsysteme

Die Systemgrenze vom Recyclingmaterial wurde beim Einsammeln gezogen.

Sekundärstoffe

Die Verwendung von Sekundärmaterial durch die OBO Bettermann Produktion Deutschland GmbH & Co. KG wurde berücksichtigt. Sekundärmaterial wurde nicht eingesetzt.

Inputs

Folgende fertigungsrelevanten Inputs wurden pro 1 lfm Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsystem in der Ökobilanz erfasst:

Energie

Für den Inputstoff Gas wird "Thermische Energie aus Erdgas Deutschland" und "Thermische Energie aus Erdgas Ungarn" angenommen. Für den Strommix im Werk Ungarn wird der "Strommix Ungarn" angesetzt. Für den Strommix im Werk in Deutschland wird der Öko-Strommix "Dresden.Strom.Natur 2019/2022 (DREWAG- Stadtwerke Dresden GmbH) angesetzt.

Angesetzte Ökostromzusammensetzung 2019 (Quelle: BMWI Erneuerbare Energien in Zahlen auf Basis AGEE.Stat)

Stromkennzeichnung des Stromanbieters	Anteile in %
Photovoltaik	39,1
Wasserkraft	4,5
Windenergie	48,5
Biomasse fest	2,1
Biogas	5,8

Tabelle 2: Strommix "Ökostromzusammensetzung 2019"

Angesetzte Ökostromzusammensetzung 2022 (Quelle: Umweltbundesamt (UBA) auf Basis AGEE-Stat/Stand 09/2023):

Stromkennzeichnung des Stromanbieters	Anteile in %
Photovoltaik	24,0
Wasserkraft	7,0
Windenergie	49,0
Biomasse fest	20,0

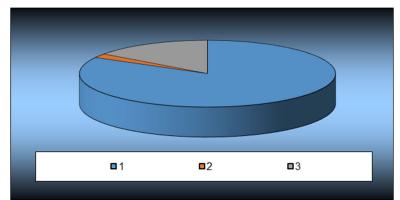
Tabelle 3: Strommix "Ökostromzusammensetzung 2022"

Prozesswärme wird zum Teil für die Hallenbeheizung genutzt. Diese lässt sich jedoch nicht quantifizieren und wurde dem Produkt als "worst case" angerechnet.

Wasser

In den einzelnen Prozessschritten zur Herstellung ergibt sich ein Wasserverbrauch von 1,1 I pro Ifm Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsystem.

Der in Kapitel 6.3 ausgewiesene Süßwasserverbrauch entsteht (unter anderem) durch die Prozesskette der Vorprodukte.


Produktgruppe: Kabeltragsysteme

Rohmaterial/Vorprodukte

In der nachfolgenden Grafiken wird der Einsatz der Rohmaterialien / Vorprodukte prozentual dargestellt.

Nr.	Material	Masse in kg je Ifm	Masse in % je Ifm
1	Stahl	35,17	83,00
2	Zink	0,84	2,00
3	Stahlblech	6,36	15,00

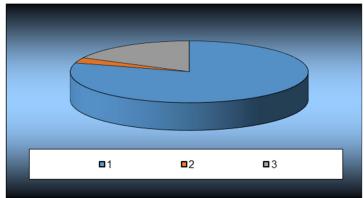

Tabelle 4: Darstellung der Einzelmaterialien in kg und % je deklarierte Einheit-Kabelrinnensystem

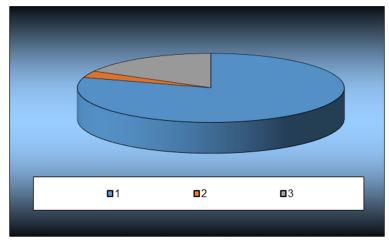
Abbildung 5: Prozentuale Darstellung der Einzelmaterialien je deklarierte Einheit (1 lfm Kabelrinnensystem)

Nr.	Material	Masse in kg je Ifm	Masse in % je Ifm
1	Stahl	28,88	79,62
2	Zink	1,03	2,84
3	Stahlblech	6,36	17,54

Tabelle 5: Darstellung der Einzelmaterialien in kg und % je deklarierte Einheit-Gitterinnensystem

Abbildung 6: Prozentuale Darstellung der Einzelmaterialien je deklarierte Einheit (1 lfm Gitterrinnensystem)

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024


Seite 15

Produktgruppe: Kabeltragsysteme

Nr.	Material	Masse in kg je Ifm	Masse in % je Ifm
1	Stahl	29,89	79,81
2	Zink	1,20	3,20
3	Stahlblech	6,36	16,98

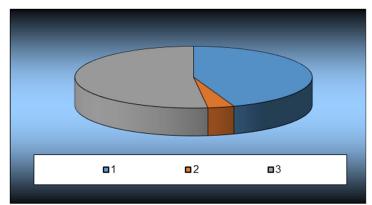

Tabelle 6: Darstellung der Einzelmaterialien in kg und % je deklarierte Einheit-Kabelleitersystem

Abbildung 7: Prozentuale Darstellung der Einzelmaterialien je deklarierte Einheit (1 lfm Kabelleitersystem)

Nr.	Material	Masse in kg je Ifm	Masse in % je Ifm
1	Stahlblech	19,41	44,48
2	Zink	1,58	3,60
3	Stahl	22.67	51,92

Tabelle 7: Darstellung der Einzelmaterialien in kg und % je deklarierte Einheit-Weitspannsystem

Abbildung 8: Prozentuale Darstellung der Einzelmaterialien je deklarierte Einheit (1 lfm Weitspannsystem)

Hilfs- und Betriebsstoffe

Es fallen 0,64 kg (PG1), 0,88 kg (PG2), 0,92 kg (PG3) und 1,14 kg (PG4) Hilfsund Betriebsstoffe an. Weitere Hilfs- und Betriebsstoffe wurden unter Einhaltung der 1-% Regel abgeschnitten.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 16

Produktgruppe: Kabeltragsysteme

Produktverpackung

Produktverpackungen wurden unter Einhaltung der 1-% Regel abgeschnitten.

Biogener Kohlenstoffgehalt

Es ist davon auszugehen, dass der biogene Kohlenstoffgehalt zu vernachlässigen ist. Zum einen ist die Gesamtmasse der biogenen Kohlenstoff enthaltenden Stoffe weniger als 5 % der Gesamtmasse des Produktes. Der biogene Kohlenstoffgehalt der Verpackung wurde nicht betrachtet, da die Verpackung unter Einhaltung der 1% Regelung abgeschnitten wurde.

Outputs

Folgende fertigungsrelevante Outputs wurden pro 1 lfm Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsystem in der Ökobilanz erfasst:

Abfall

Sekundärrohstoffe wurden bei den Gutschriften berücksichtigt. Siehe Kapitel 6.3 Wirkungsabschätzung.

Abwasser

Bei der Herstellung fallen 1,1 I Abwasser an.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 17

Produktgruppe: Kabeltragsysteme

6.3 Wirkungsabschätzung

Ziel

Die Wirkungsabschätzung wurde in Bezug auf die Inputs und Outputs durchgeführt. Dabei werden folgende Wirkungskategorien betrachtet:

Kernindikatoren

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in DIN EN 15804+A2 beschrieben.

Folgende Wirkungskategorien werden als Kernindikatoren in der EPD dargestellt:

- Klimawandel gesamt (GWP-t)
- Klimawandel fossil (GWP-f)
- Klimawandel biogen (GWP-b)
- Klimawandel Landnutzung & Landnutzungsänderung (GWP-I)
- Ozonabbau (ODP)
- Versauerung (AP)
- Eutrophierung Süßwasser (EP-fw)
- Eutrophierung Salzwasser (EP-m)
- Eutrophierung Land (EP-t)
- Photochemische Ozonbildung (POCP)
- Verknappung von abiotischen Ressourcen fossile Energieträger (ADPF)
- Verknappung von abiotischen Ressourcen Mineralien und Metalle (ADPE)
- Wassernutzung (WDP)

G\

Ressourceneinsatz

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in DIN EN 15804-A2 beschrieben.

Folgende Parameter für den Ressourceneinsatz werden in der EPD dargestellt:

- Erneuerbare Primärenergie als Energieträger (PERE)
- Erneuerbare Primärenergie zur stofflichen Nutzung (PERM)
- Gesamteinsatz erneuerbarer Primärenergie (PERT)
- Nicht erneuerbare Primärenergie als Energieträger (PENRE)
- Erneuerbare Primärenergie zur stofflichen Nutzung (PENRM)
- Gesamteinsatz nicht erneuerbarer Primärenergie (PENRT)
- Einsatz von Sekundärstoffen (SM)
- Einsatz von erneuerbaren Sekundärbrennstoffen (RSF)
- Einsatz von nicht erneuerbaren Sekundärbrennstoffen (NRSF)
- Nettoeinsatz von Süßwasserressourcen (FW)

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 18

Produktgruppe: Kabeltragsysteme

Abfälle

Die Auswertung des Abfallaufkommens zur Herstellung von 1 Ifm Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsystem wird getrennt für die Fraktionen hausmüllähnliche Gewerbeabfälle, Sonderabfälle und radioaktive Abfälle dargestellt. Da die Abfallbehandlung innerhalb der Systemgrenzen modelliert ist, sind die dargestellten Mengen die abgelagerten Abfälle. Abfälle entstehen zum Teil durch die Herstellung der Vorprodukte.

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in DIN EN 15804-A2 beschrieben.

Folgende Abfallparameter und Indikatoren für Output-Stofflüsse werden in der EPD dargestellt:

- Deponierter gefährlicher Abfall (HWD)
- Deponierter nicht gefährlicher Abfall (NHWD)
- Radioaktiver Abfall (RWD)
- Komponenten f
 ür die Weiterverwendung (CRU)
- Stoffe zum Recycling (MFR)
- Stoffe f
 ür die Energier
 ückgewinnung (MER)
- Exportierte Energie elektrisch (EEE)
- Exportierte Energie thermisch (EET)

Zusätzliche Umweltwirkungsindikatoren

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in DIN EN 15804-A2 beschrieben.

Folgende zusätzliche Wirkungskategorien werden in der EPD dargestellt:

- Feinstaubemissonen (PM)
- Ionisierende Strahlung, menschliche Gesundheit (IRP)
- Ökotoxizität Süßwasser (ETP-fw)
- Humantoxizität, kanzerogene Wirkungen (HTP-c)
- Humantoxizität, nicht kanzerogene Wirkungen (HTP-nc)
- Mit der Landnutzung verbundene Wirkungen/Bodenqualität (SQP)

ift					Ergebni	isse pro 1	Ifm Kabe	lrinnensv	stem							
ROSENHEIM	Einheit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Kernindikatoren																
GWP-t	kg CO₂-Äqv.	81,32	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,19	1,77	0,01	-15,83
GWP-f	kg CO₂-Äqv.	81,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,19	1,76	0,01	-15,92
GWP-b	kg CO₂-Äqv.	0,24	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,16E-04	0,015	4,32E-04	0,09
GWP-I	kg CO₂-Äqv.	0,05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,10E-03	2,00E-04	3,97E-05	-2,11E-03
ODP	kg CFC-11-Äqv.	5,16E-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,18E-14	3,70E-11	3,28E-14	-2,14E-11
AP	mol H⁺-Äqv.	0,45	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,27E-04	5,67E-03	9,06E-05	-0,04
EP-fw	kg P-Äqv.	1,51E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	4,23E-07	7,59E-06	2,58E-08	-3,71E-06
EP-m	kg N-Ägv.	0,05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,38E-05	9,77E-04	2,34E-05	-6,25E-03
EP-t	mol N-Äqv.	0,65	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	9,97E-04	0,01	2,57E-04	-0,05
POCP	kg NMVOC-Äqv.	0,18	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,97E-04	2,68E-03	7,06E-05	-0,02
ADPF*2	MJ	1009,19	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,47	37,69	0,17	-158,36
ADPE*2	kg Sb-Äqv.	3,45E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,29E-08	3,64E-07	5,92E-10	-9,02E-05
WDP*2	m³ Welt-Äqv. entzogen	9,95	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,08E-04	0,35	1,20E-03	-1,07
Ressourceneinsatz																
PERE	MJ	288,51	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	25,87	0,027	-6,25
PERM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PERT	MJ	288,51	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	25,87	0,027	-6,25
PENRE	MJ	1011,71	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,47	37,70	0,17	-158,38
PENRM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	1011,71	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,47	37,70	0,17	-158,38
SM	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
RSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
FW	m³	-0,87	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,45E-04	0,02	4,29E-05	-1,61
							llkategori									
HWD	kg	3,61E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	6,59E-12	3,55E-09	3,66E-12	-1,18E-06
NHWD	kg	10,02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,60E-04	0,03	0,85	-1,91
RWD	kg	0,04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,57E-06	5,92E-03	1,91E-06	-1,74E-05
						Outpu	t-Stoffflüs	sse								
CRU	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
MFR	kg	7,29	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	42,37	0,00	0,00
MER	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
EEE	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
EET	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00

Legende:

GWP-t – Klimawandel - gesamt GWP-f – Klimawandel - fossil GWP-b – Klimawandel - biogen GWP-l – Klimawandel - Landnutzung und Landnutzungsänderung ODP – Ozonabbau AP – Versauerung EP-fw – Eutrophierung - Süßwasser EP-m – Eutrophierung - Salzwasser EP-t – Eutrophierung - Land POCP – Photochemische Ozonbildung ADPF*2 – Verknappung von abiotischen Ressourcen - Mineralien und Metalle WDP*2 – Wassernutzung PERE – Einsatz

erneuerbarer Primärenergie **PERM** – Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger **PERT** – Gesamteinsatz erneuerbarer Primärenergie **PENRM** – Einsatz der als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger **PENRT** – Gesamteinsatz nicht erneuerbarer Primärenergie

SM – Einsatz von Sekundärstoffen RSF – Einsatz von erneuerbaren Sekundärbrennstoffen NRSF – Einsatz von nicht erneuerbaren Sekundärbrennstoffen FW – Nettoeinsatz von Süßwasserressourcen HWD – Deponierter gefährlicher Abfall NHWD – Deponierter nicht gefährlicher Abfall RWD – Radioaktiver Abfall CRU – Komponenten für die Weiterverwendung MFR – Stoffe zum Recycling MER – Stoffe für die Energierückgewinnung EEE – Exportierte Energie - elektrisch EET – Exportierte Energie – thermisch ND – Nicht betrachtet

Einschränkungshinweise:

Deklarationsnummer: EPD-KTO-17.0

*1 Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird ebenfalls nicht von diesem Indikator gemessen.

ift					Ergebni	isse pro 1	Ifm Gitte	rrinnensv	stem							
ROSENHEIM	Einheit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
	Kernindikatoren															
GWP-t	kg CO₂-Äqv.	42,27	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	1,57	0,01	-10,63
GWP-f	kg CO₂-Äqv.	42,02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	1,56	0,01	-10,69
GWP-b	kg CO₂-Äqv.	0,22	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	6,98E-04	0,013	3,71E-04	0,06
GWP-I	kg CO₂-Äqv.	0,02	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,49E-03	1,70E-04	3,41E-05	-1,42E-03
ODP	kg CFC-11-Äqv.	3,33E-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,72E-14	2,88E-11	2,82E-14	-1,44E-11
AP	mol H⁺-Äqv.	0,14	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,21E-04	3,32E-03	7,78E-05	-0,03
EP-fw	kg P-Äqv.	9,38E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,72E-07	5,84E-06	2,22E-08	-2,49E-06
EP-m	kg N-Äqv.	0,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	7,,20E5	7,96E-04	2,01E-05	-4,20E-03
EP-t	mol N-Äqv.	0,33	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,62E-04	8,32E-03	2,21E-04	-0,04
POCP	kg NMVOC-Äqv.	0,09	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,73E-04	2,12E-03	6,06E-05	-0,02
ADPF*2	MJ	514,68	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,12	32,74	0,14	-106,38
ADPE*2	kg Sb-Äqv.	1,80E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,11E-08	2,41E-07	5,08E-10	-6,06E-05
WDP*2	m³ Welt-Äqv. entzogen	2,10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,14E-04	0,34	1,20E-03	-0,72
Ressourceneinsatz																
PERE	MJ	181,07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,13	19,60	0,024	-4,20
PERM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PERT	MJ	181,07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,13	19,60	0,024	-4,20
PENRE	MJ	516,97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,12	32,75	0,14	-106,39
PENRM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	516,97	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,12	32,75	0,14	-103,39
SM	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
RSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
FW	m³	0,92	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,24E-04	0,02	3,68E-05	-1,08
						Abfa	llkategori	en								
HWD	kg	4,52E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	5,66E-12	2,56E-09	3,15E-12	-7,96E-07
NHWD	kg	4,20	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,10E-04	0,02	0,73	-1,28
RWD	kg	0,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,22E-06	5,19E-03	1,64E-06	-1,17E-05
						Outpu	ıt-Stoffflü	sse								
CRU	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
MFR	kg	6,54	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	36,27	0,00	0,00
MER	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
EEE	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
EET	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00

Legende:

GWP-t – Klimawandel - gesamt GWP-f – Klimawandel - fossil GWP-b – Klimawandel - biogen GWP-l – Klimawandel - Landnutzung und Landnutzungsänderung ODP – Ozonabbau AP – Versauerung EP-fw – Eutrophierung - Süßwasser EP-m – Eutrophierung - Salzwasser EP-t – Eutrophierung - Land POCP – Photochemische Ozonbildung ADPF*2 – Verknappung von abiotischen Ressourcen - Mineralien und Metalle WDP*2 – Wassernutzung PERE – Einsatz

erneuerbarer Primärenergie **PERM** – Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger **PERT** – Gesamteinsatz erneuerbarer Primärenergie **PENRM** – Einsatz der als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger **PENRT** – Gesamteinsatz nicht erneuerbarer Primärenergie

SM – Einsatz von Sekundärstoffen RSF – Einsatz von erneuerbaren Sekundärbrennstoffen NRSF – Einsatz von nicht erneuerbaren Sekundärbrennstoffen FW – Nettoeinsatz von Süßwasserressourcen HWD – Deponierter gefährlicher Abfall NHWD – Deponierter nicht gefährlicher Abfall RWD – Radioaktiver Abfall CRU – Komponenten für die Weiterverwendung MFR – Stoffe zum Recycling MER – Stoffe für die Energierückgewinnung EEE – Exportierte Energie - elektrisch EET – Exportierte Energie – thermisch ND – Nicht betrachtet

Einschränkungshinweise:

Deklarationsnummer: EPD-KTO-17.0

*1 Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird ebenfalls nicht von diesem Indikator gemessen.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ND

ND

Deklarationsn	nummer: EPD-KTO-17.0)	Veröffentlichungsdatum: 10.07.2024											Seite 21		
ift					Ergebr	nisse pro 1	I Ifm Kab	elleitersys	stem							
ROSENHEIM	Einheit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
	Kernindikatoren															
GWP-t	kg CO₂-Äqv.	64,36	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,17	1,57	0,01	-13,64
GWP-f	kg CO₂-Äqv.	64,11	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,17	1,56	0,01	-13,72
GWP-b	kg CO₂-Äqv.	0,22	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	7,31E-04	0,013	3,82E-04	0,08
GWP-I	kg CO ₂ -Äqv.	0,04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	9,58E-04	1,77E-04	3,50E-05	-1,82E-03
ODP	kg CFC-11-Äqv.	4,47E-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,82E-14	3,27E-11	2,90E-14	-1,84E-11
AP	mol H+-Äqv.	0,31	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,04E-04	5,01E-03	7,99E-05	-0,03
EP-fw	kg P-Äqv.	1,22E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,75E-07	6,71E-06	2,28E-08	-3,20E-06
EP-m	kg N-Äqv.	0,04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	7,42E-05	8,64E-04	2,07E-05	-5,39E-03
EP-t	mol N-Äqv.	0,52	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,81E-04	9,06E-03	2,27E-04	-0,05
POCP	kg NMVOC-Äqv.	0,14	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,74E-04	2,37E-03	6,23E-05	-0,02
ADPF*2	MJ	793,32	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,18	33,31	0,15	-136,43
ADPE*2	kg Sb-Äqv.	3,00E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,14E-08	3,22E-07	5,22E-10	-7,77E-05
WDP*2	m³ Welt-Äqv. entzogen	6,84	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,33E-04	0,30	1,23E-03	-0,92
						Resso	urceneins	satz								
PERE	MJ	243,45	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,14	22,87	0,024	-5,38
PERM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PERT	MJ	243,45	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,14	22,87	0,024	-5,38
PENRE	MJ	795,82	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,18	33,32	0,15	-136,44
PENRM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	795,82	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,18	33,32	0,15	-136,44
SM	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
RSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
FW	m³	-0,84	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,29E-04	0,01	3,78E-05	-1,38
						Abfa	llkategori	en								
HWD	kg	5,18E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	5,83E-12	3,23E-09	3,15E-12	-1,02E-06
NHWD	kg	7,84	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,18E-04	0,03	0,75	-1,65
RWD	kg	0,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,27E-06	5,23E-03	1,69E-06	-1,49E-05
						Outpu	ıt-Stoffflü	sse								
CRU	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
MFR	kg	6,77	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	37,43	0,00	0,00
MER	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00

Legende:

EEE

EET

GWP-t - Klimawandel - gesamt GWP-f - Klimawandel - fossil GWP-b - Klimawandel - biogen GWP-I - Klimawandel - Landnutzung und Landnutzungsänderung ODP - Ozonabbau AP - Versauerung EP-fw - Eutrophierung - Süßwasser EP-m - Eutrophierung - Salzwasser EP-t - Eutrophierung - Land POCP - Photochemische Ozonbildung ADPF*2 - Verknappung von abiotischen Ressourcen - fossile Energieträger ADPE*2 – Verknappung von abiotischen Ressourcen - Mineralien und Metalle WDP*2 – Wassernutzung PERE – Einsatz

ND

ND

ND

ND

ND

ND

ND

ND

erneuerbarer Primärenergie PERM – Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger PERT – Gesamteinsatz erneuerbarer Primärenergie PERM – Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger PERT – Gesamteinsatz erneuerbarer Primärenergie Primärenergie PENRM – Einsatz der als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger PENRT – Gesamteinsatz nicht erneuerbarer Primärenergie

ND

ND

SM - Einsatz von Sekundärstoffen RSF - Einsatz von erneuerbaren Sekundärbrennstoffen RSF - Einsatz von erneuerbaren Sekundärbrennstoffen RWD - Nettoeinsatz von Süßwasserressourcen RWD -Deponierter gefährlicher Abfall NHWD – Deponierter nicht gefährlicher Abfall RWD – Radioaktiver Abfall CRU – Komponenten für die Weiterverwendung MFR – Stoffe zum Recycling MER – Stoffe für die Energierückgewinnung EEE – Exportierte Energie - elektrisch EET – Exportierte Energie – thermisch ND – Nicht betrachtet

Einschränkungshinweise:

MJ

M.J

0.00

0.00

ND

ND

ND

ND

ND

ND

*1 Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird ebenfalls nicht von diesem Indikator gemessen.

Deklarations	snummer: EPD-KTO-17.0				Verd	öffentlich	ungsdat	<u>um: 10.0</u>	7.2024						Seite 22	•
ift						nisse pro										
ROSENHEIM	Einheit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
						Kern	indikator	en								
GWP-t	kg CO₂-Äqv.	70,61	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,19	1,82	0,01	-29,54
GWP-f	kg CO₂-Äqv.	70,36	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,19	1,81	0,01	-29,71
GWP-b	kg CO₂-Äqv.	0,21	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,58E-04	0,015	4,43E-04	0,18
GWP-I	kg CO₂-Äqv.	0,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,13E-03	2,06E-04	4,06E-05	-3,95E-03
ODP	kg CFC-11-Äqv.	3,72E-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,28E-14	3,81E-11	3,36E-14	-3,99E-11
AP	mol H⁺-Äqv.	0,21	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,36E-04	5,84E-03	9,27E-05	-0,07
EP-fw	kg P-Äqv.	1,07E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	4,37E-07	7,82E-06	2,64E-08	-6,92E-06
EP-m	kg N-Äqv.	0,05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	8,65E-05	1,00E-03	2,40E-05	-1,16E-02
EP-t	mol N-Äqv.	0,52	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,04E-03	0,01	2,63E-04	-0,10
POCP	kg NMVOC-Äqv.	0,15	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,08E-04	2,76E-03	7,23E-05	-0,04
ADPF*2	MJ	766,07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,63	38,83	0,17	-295,49
ADPE*2	kg Sb-Äqv.	2,34E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,35E-08	3,75E-07	6,06E-10	-1,68E-04
WDP*2	m³ Welt-Äqv. entzogen	2,94	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	9,72E-04	0,35	1,41E-03	-2,00
						Resso	urceneins	satz								
PERE	MJ	197,74	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	26,65	0,028	-11,66
PERM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PERT	MJ	197,74	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,16	26,65	0,028	-11,66
PENRE	MJ	770,63	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,63	38,84	0,17	-295,52
PENRM	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
PENRT	MJ	770,63	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,63	38,84	0,17	-295,52
SM	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
RSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
NRSF	MJ	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
FW	m³	-1,04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	1,45E-04	0,01	4,39E-05	-3,00
						Abfa	llkategori	en								
HWD	kg	6,86E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	6,81E-12	3,66E-09	3,75E-12	-2,21E-06
NHWD	kg	5,59	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	3,71E-04	0,04	0,87	-3,57
RWD	kg	0,03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	2,65E-06	6,10E-03	1,96E-06	-3,24E-05
	·					Outpu	ıt-Stoffflü	sse								
CRU	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
MFR	kg	7,54	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	43,66	0,00	0,00
MER	kg	0,00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00	0,00	0,00	0,00	0,00
	9	-,										-,	-,			,

Legende:

EEE

EET

GWP-t – Klimawandel - gesamt GWP-f – Klimawandel - fossil GWP-b – Klimawandel - biogen GWP-l – Klimawandel - Landnutzung und Landnutzungsänderung ODP – Ozonabbau AP – Versauerung EP-fw – Eutrophierung - Süßwasser EP-m – Eutrophierung - Salzwasser EP-t – Eutrophierung - Land POCP – Photochemische Ozonbildung ADPF*2 – Verknappung von abiotischen Ressourcen - Mineralien und Metalle WDP*2 – Wassernutzung PERE – Einsatz

ND

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

erneuerbarer Primärenergie **PERM** – Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger **PERT** – Gesamteinsatz erneuerbarer Primärenergie **PENRM** – Einsatz der als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger **PENRT** – Gesamteinsatz nicht erneuerbarer Primärenergie

ND

ND

ND

ND

SM – Einsatz von Sekundärstoffen RSF – Einsatz von erneuerbaren Sekundärbrennstoffen NRSF – Einsatz von nicht erneuerbaren Sekundärbrennstoffen FW – Nettoeinsatz von Süßwasserressourcen HWD – Deponierter gefährlicher Abfall NHWD – Deponierter nicht gefährlicher Abfall RWD – Radioaktiver Abfall CRU – Komponenten für die Weiterverwendung MFR – Stoffe zum Recycling MER – Stoffe für die Energierückgewinnung EEE – Exportierte Energie - elektrisch EET – Exportierte Energie – thermisch ND – Nicht betrachtet

Einschränkungshinweise:

MJ

M.J

ND

ND

0.00

0.00

ND

ND

Doklarationenummer: EDD_KTO_17.0

*1 Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird ebenfalls nicht von diesem Indikator gemessen.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 23

Produktgruppe: Kabeltragsysteme

6.4 Auswertung, Darstellung der Bilanzen und kritische Prüfung

Auswertung

Die Umweltwirkungen während des Produktionsstadiums werden von allen untersuchten Führungssysteme für Kabel und Leitungen (Gitterrinnensystem, Kabelleitersystem, Kabelrinnensystem und Weitspannsystem) in allen Umweltkategorien nahezu ausschließlich von den eingesetzten Rohstoffen Stahl und Stahlblech dominiert. Eine untergeordnete Rolle nimmt die Herstellung (primär der Gasbedarf) und der Zinkanteil ein.

Die Umweltwirkungen des Transportes der Grundstoffe sind sehr marginal

Die Umweltwirkungen vom betrachteten Gitterrinnensystem werden primär vom Stahlblechanteils des Stielauslegers und sekundär vom Stahlanteils des Stiels dominiert.

Die Umweltwirkungen des Kabelleitersystems wird vom Stahlbandanteils der Leiter und des Stahlblechanteils des Stielauslegers bestimmt.

Beim bilanzierten Kabelrinnensystem verursacht der Stahlbandanteils der Rinne die höchsten Umweltwirkungen.

Die Umweltwirkungen des Weitspannsystems wird in erster Linie vom Stahlanteil der Rinne dominiert.

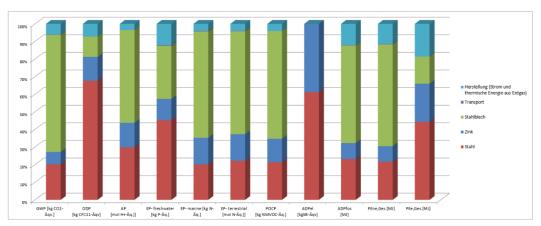
Die Umweltwirkungen in der Herstellungsphase, die die Herstellung, der Zinkanteil und der Transport verursachen sind bei allen 4 allen bilanzierten Führungssysteme gering bis marginal.

Die Umweltwirkungen im Entsorgungsstadium (Modul C1-C4) der betrachteten Führungssysteme im Vergleich zum Produktionsstadium (Modul A1-A3) sind bei Betrachtung der Ergebnistabellen in allen Umweltkategorien sehr gering.

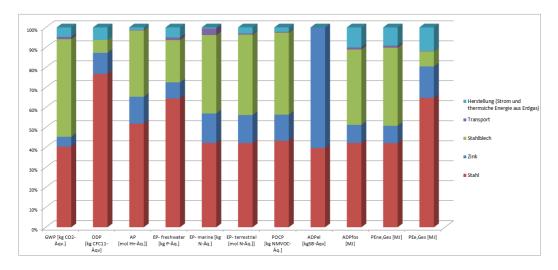
Beim Recycling der Produkte kann für den Stahl/-Stahlblechanteil je nach Führungssystem ca. 20 - 40 % der im Lebenszyklus auftretenden Umweltwirkungen in Szenario D gutgeschrieben werden. Zu beachten ist, dass Gutschriften nur für die Nettoschrottmengen ausgewiesen und angesetzt wurden.

Im Vergleich zur EPD vor fünf Jahren (der Gitterinnensysteme und Kabelrinnensysteme), weichen die Ökobilanzergebnisse erheblich voneinander ab. Gründe hierfür sind, dass andere, passendere "LCA for Experts" Datensätze verwendet wurden, sich die Hintergrunddaten in "LCA for Experts" geändert haben und durch den Deklarationsinhaber. Der Hauptgrund ist aber, dass sich die Masse pro Ifm der beiden zuvor genannten Führungssysteme im Zuge der EPD- Aktualisierung erhöht hat (siehe hierzu auch Erläuterung unter Punkt 3.1 Deklarierte Einheit).

Zudem können aufgrund der Normumstellung und die daraus enthaltene neue Berechnungsmethodik die Umweltwirkungen nicht miteinander verglichen werden. Die Aufteilung der wesentlichen Umweltwirkungen ist in untenstehendem Dia-


gramm dargestellt.

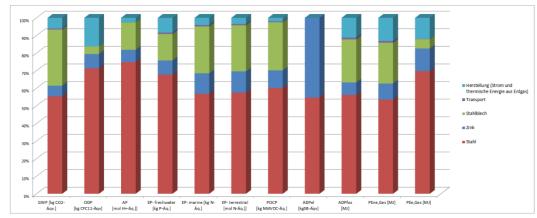
Die aus der Ökobilanz errechneten Werte können für eine Gebäudezertifizierung verwendet werden. Diagramm



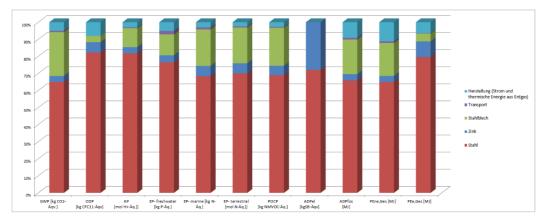
Produktgruppe: Kabeltragsysteme

Die nachfolgend aufgeführten Diagramme zeigen die prozentualen Umweltwirkungen während des Produktionsstadiums (Modul A1-A3) der jeweiligen deklarierten Führungssysteme für Kabel und Leitungen auf.

Abbildung 9: Prozentuale Anteile ausgewählter Komponenten der Herstellung und der Transporte im Produktionsstadium anhand ausgewählter Umweltwirkungskategorien (Kabelrinnensystem)


Abbildung 10: Prozentuale Anteile ausgewählter Komponenten der Herstellung und der Transporte im Produktionsstadium anhand ausgewählter Umweltwirkungskategorien (Gitterrinnensystem)

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024


Seite 25

Produktgruppe: Kabeltragsysteme

Abbildung 11: Prozentuale Anteile ausgewählter Komponenten der Herstellung und der Transporte im Produktionsstadium anhand ausgewählter Umweltwirkungskategorien (Kabelleitersystem)

Abbildung 12: Prozentuale Anteile ausgewählter Komponenten der Herstellung und der Transporte im Produktionsstadium anhand ausgewählter Umweltwirkungskategorien (Weitspannsystem)

Bericht

Der dieser EPD zugrunde liegende Ökobilanzbericht wurde gemäß den Anforderungen der DIN EN ISO 14040 und DIN EN ISO 14044, sowie der DIN EN 15804 und DIN EN ISO 14025 durchgeführt und richtet sich nicht an Dritte, da er vertrauliche Daten enthält. Er ist beim ift Rosenheim hinterlegt. Ergebnisse und Schlussfolgerungen werden der Zielgruppe darin vollständig, korrekt, unvoreingenommen und verständlich mitgeteilt. Die Ergebnisse der Studie sind nicht für die Verwendung in zur Veröffentlichung vorgesehenen vergleichenden Aussagen bestimmt.

Kritische Prüfung

Die kritische Prüfung der Ökobilanz und des Berichts erfolgte im Rahmen der EPD-Prüfung durch die externe Prüferin Vivien Zwick. Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 26

Produktgruppe: Kabeltragsysteme

7 Allgemeine Informationen zur EPD

Vergleichbarkeit

Diese EPD wurde nach DIN EN 15804 erstellt und ist daher nur mit anderen EPDs, die den Anforderungen der DIN EN 15804 entsprechen, vergleichbar.

Grundlegend für einen Vergleich sind der Bezug zum Gebäudekontext und dass die gleichen Randbedingungen in den Lebenszyklusphasen betrachtet werden.

Für einen Vergleich von EPDs für Bauprodukte gelten die Regeln in Kapitel 5.3 der DIN EN 15804.

Die bilanzierten Referenzprodukte wurden über den worst-case Ansatz identifiziert und als repräsentativ für die Produktgruppe erachtet. Ergebnisse einzelner Produkte innerhalb der Produktgruppe unterscheiden sich von den Ergebnissen der Referenzprodukte. Die Ermittlung der Produktgruppen und die sich hieraus ergebenden Varianten werden im Hintergrundbericht belegt.

Kommunikation

Das Kommunikationsformat dieser EPD genügt den Anforderungen der EN 15942:2012 und dient damit auch als Grundlage zur B2B Kommunikation; allerdings wurde die Nomenklatur entsprechend der DIN EN 15804 gewählt.

Verifizierung

Die Überprüfung der Umweltproduktdeklaration ist entsprechend der ift Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen in Übereinstimmung mit den Anforderungen von DIN EN ISO 14025 dokumentiert.

Diese Deklaration beruht auf den PCR-Dokumenten "PCR Teil A" PCR-A-1.0:2023 und "Führungssysteme für Kabel und Leitungen" PCR-KTS-2.0:2021.

Die Europäische Norm EN 15804 dient als Kern-PCR a)
Unabhängige externe Verifizierung der Deklaration und Angaben
nach EN ISO 14025:2010
Unabhängige, dritte Prüferin: b)
[Vivien, Zwick]
^{a)} Produktkategorieregeln
b) Freiwillig für den Informationsaustausch innerhalb der Wirtschaft,
verpflichtend für den Informationsaustausch zwischen Wirtschaft und
Verbrauchern (siehe EN ISO 14025:2010, 9.4).

Überarbeitungen des Dokumentes

Nr.	Datum	Kommentar	Bearbeiter:in	Prüfer:in
1	10.07.2024	Externe Prüfung	Dumproff	Zwick

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 27

Produktgruppe: Kabeltragsysteme

8 Literaturverzeichnis

- 1. **Forschungsvorhaben.** *EPDs für transparente Bauelemente Abschlussbericht.* Rosenheim : ift Rosenheim GmbH, 2011. SF-10.08.18.7-09.21/II 3-F20-09-1-067.
- 2. **ift-Richtlinie NA-01/4.** Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Rosenheim: ift Rosenheim GmbH, 2023.
- 3. **ift Rosenheim GmbH.** Bedingungen und Hinweise zur Verwendung von ift-Prüfdokumentationen. Rosenheim: s.n., 2016.
- 4. **DIN EN ISO 12457 Teil 1-4.** Charakterisierung von Abfällen Auslaugung; Übereinstimmungsuntersuchung für die Auslaugung von körnigen Abfällen und Schlämmen Teil 1-4. Berlin: Beuth Verlag GmbH, 2003.
- 5. **IKP Universität Stuttgart und PE Europe GmbH.** *GaBi* 10: Software und Datenbank zur Ganzheitlichen Bilanzierung. Leinfelden-Echterdingen: s.n., 2020.
- 6. Chemikaliengesetz ChemG. Gesetz zum Schutz vor gefährlichen Stoffen Unterteilt sich in Chemikaliensetz und eine Reihe von Verordnungen; hier relevant: Gesetz zum Schutz vor gefährlichen Stoffen. Berlin: BGBI. I S. 1146, 2017.
- 7. Bundesimmissionsschutzgesetz BlmSchG. Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen. Berlin: BGBI. I S. 3830, 2017.
- 8. **ISO 21930:2017-07.** Hochbau Nachhaltiges Bauen Umweltproduktdeklarationen von Bauprodukten. Berlin: Beuth Verlag, 2017.
- 9. ISO 15686-1:2011-05. Hochbau und Bauwerke Planung der Lebensdauer Teil 1: Allgemeine Grundlagen und Rahmenbedingungen. s.l.: Beuth Verlag GmbH, 2011.
- 10. **ISO 15686-2:2012-05**. Hochbau und Bauwerke Planung der Lebensdauer Teil 2: Verfahren zur Voraussage der Lebensdauer . s.l. : Beuth Verlag GmbH, 2012.
- 11. ISO 15686-7:2017-04. Hochbau und Bauwerke Planung der Lebensdauer Teil 7: Leistungsbewertung für die Rückmeldung von Daten über die Nutzungsdauer aus der Praxis . s.l. : Beuth Verlag GmbH, 2017.
- 12. **ISO 15686-8:2008-06.** Hochbau und Bauwerke Planung der Lebensdauer Teil 8: Referenznutzungsdauer und Bestimmung der Nutzungsdauer . s.l. : Beuth Verlag GmbH, 2008.
- 13. **DIN EN ISO 16000 Teil 6, 9, 11.** Innenraumluftverunreinigungen: Bestimmung der Emissionen von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen. Berlin: Beuth Verlag GmbH, 2012, 2008, 2006.
- 14. **DIN EN 13501-1:2010-01.** Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten. Berlin: Beuth Verlag GmbH. 2010.
- 15. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Leitfaden Nachhaltiges Bauen. Berlin: s.n., 2016.
- 16. **DIN EN 15804:2012+A2:2019+AC:2021.** Nachhaltigkeit von Bauwerken Umweltproduktdeklarationen Grundregeln für die Produktkategorie Bauprodukte. Berlin: Beuth Verlag GmbH, 2022.

- 17. **EN 17672:2022.** Nachhaltigkeit von Bauwerken Umweltproduktdeklarationen Horizontale Regeln für die Kommunikation von Unternehmen an Verbrauchern. Berlin: Beuth Verlag GmbH, 2022.
- 18. **EN 15942:2012-01.** *Nachhaltigkeit von Bauwerken Umweltproduktdeklarationen Kommunikationsformate zwischen Unternehmen.* Berlin : Beuth Verlag GmbH, 2012.
- 19. **OENORM S 5200:2009-04-01.** Radioaktivität in Baumaterialien. Berlin: Beuth Verlag GmbH, 2009.
- 20. **EN ISO 14025:2011-10.** *Umweltkennzeichnungen und deklarationen Typ III Umweltdecklarationen Grundsätze und Verfahren.* Berlin : Beuth Verlag GmbH, 2011.
- 21. **DIN EN ISO 14044:2006-10.** *Umweltmanagement Ökobilanz Anforderungen und Anleitungen.* Berlin : Beuth Verlag GmbH, 2006.
- 22. **DIN EN ISO 14040:2018-05.** *Umweltmanagement Ökobilanz Grundsätze und Rahmenbedingungen.* Berlin : Beuth Verlag GmbH, 2018.
- 23. Chemikalien-Verbotsverordnung ChemVerbotsV. Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach Chemikaliengesetz. Berlin: BGBI. I S. 1328, 2017.
- 24. **Gefahrstoffverordnung GefStoffV.** *Verordnung zum Schutz vor Gefahrstoffen.* Berlin : BGBI. I S. 3758, 2017.
- 25. **Eyerer, P. und Reinhardt, H.-W.** Ökologische Bilanzierung von Baustoffen und Gebäuden Wege zu einer ganzheitlichen Bilanzierung. Basel : Birkhäuser Verlag, 2000. 26. **Klöpffer, W und Grahl, B.** Ökobilanzen (LCA). Weinheim : Wiley-VCH-Verlag, 2009.
- 27. **PCR Teil A.** Allgemeine Produktkategorieregeln für Umweltprodukdeklarationen nach EN ISO 14025 und EN 15804. Rosenheim: ift Rosenheim, 2023.
- 28. PCR Teil B Führungssysteme für Kabel und Leitungen. Produktkategorieregeln für Umweltprodukdeklarationen nach EN ISO 14025 und EN 15804. Rosenheim : ift Rosenheim, 2021.

Deklarationsnummer: EPD-KTO-17.0

Veröffentlichungsdatum: 10.07.2024

Seite 28

Produktgruppe: Kabeltragsysteme

9 Anhang

Beschreibung der Lebenszyklusszenarien für Kabelrinnen-, Gitterrinnen-, Kabelleiter- und Weitspannsysteme

Her	stellur phase	ngs-	Ba pha		Nutzungsphase* Entsorgungsphase							Vorteile und Belastungen außerhalb der Systemgren- zen				
A 1	A2	А3	A4	A5	В1	B2	ВЗ	В4	В5	В6	В7	C1	C2	СЗ	C4	D
Rohstoffbereitstellung	Transport	Herstellung	Transport	Bau/Einbauprozess	Nutzung	Instandhaltung	Reparatur	Ersatz	Umbau/Erneuerung	betrieblicher Energieeinsatz	betrieblicher Wassereinsatz	Rückbau/Abriss	Transport	Abfallbehandlung	Deponierung	Wiederverwendungs- Rückgewinnungs- Recyclingpotenzial
✓	✓	✓			_		_			_		✓	✓	✓	✓	✓

^{*} Für deklarierte B-Module erfolgt die Berechnung der Ergebnisse unter Berücksichtigung der spezifizierten RSL bezogen auf ein Jahr **Tabelle 8**: Übersicht der betrachteten Lebenszyklusphasen

Für die Szenarien wurden Herstellerangaben verwendet.

<u>Hinweis:</u> Die jeweilig gewählten und üblichen Szenarien sind fett markiert. Diese wurden zur Berechnung der Indikatoren in der Gesamttabelle herangezogen.

- ✓ Teil der Betrachtung
- Nicht Teil der Betrachtung

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 29

Produktgruppe: Kabeltragsysteme

C1 Rückbau, Abriss

Nr.	Nutzungsszenario	Beschreibung
C1	Abbruch	Händisch und teilweise mit kleinen Baumaschinen; Sammelquote 100 % Weitere Rückbauquoten möglich, entsprechend begründen.

Beim gewählten Szenario entstehen keine relevanten Inputs oder Outputs. Der Energieverbrauch beim Rückbau kann vernachlässigt werden. Entstehende Aufwendungen sind marginal.

Da es sich hierbei um ein einzelnes Szenario handelt, sind die Ergebnisse in der jeweiligen Gesamttabelle dargestellt.

Bei abweichenden Aufwendungen wird der Ausbau der Produkte als Bestandteil der Baustellenabwicklung auf Gebäudeebene erfasst.

C2 Transport

Nr.	Nutzungsszenario	Beschreibung
C2	Transport	Transport zur Sammelstelle mit 28t -32t LKW (Euro 6), Diesel, 22 t Nutzlast, 85% ausgelastet, 50 km
_		

Da es sich hierbei um ein einzelnes Szenario handelt, sind die Ergebnisse in der jeweiligen Gesamttabelle dargestellt.

C3 Abfallbewirtschaftung

Nr.	Nutzungsszenario	Beschreibung
C3	Aktuelle Marktsituation	 Anteil zur Rückführung von Materialien: Stahl (inklusive Zinkanteil) 98 % in Schmelze (in Anlehnung an UBA, 2017) Rest in Deponie

Stromverbrauch Verwertungsanlage: 0,5 MJ/kg.

Da die Produkte europaweit vertrieben werden, wurden dem Entsorgungsszenario Durchschnittsdatensätze für Europa zugrunde gelegt.

In untenstehender Tabelle werden die Entsorgungsprozesse beschrieben und massenanteilig dargestellt. Die Berechnung erfolgt aus den oben prozentual aufgeführten Anteilen bezogen auf die deklarierte Einheit des Produktsystems.

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 30

Produktgruppe: Kabeltragsysteme

C3 Entsorgung	Einheit	C3
Sammelverfahren, getrennt gesammelt	kg	43,22
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	0,00
Rückholverfahren, zur Wiederverwendung	kg	0,00
Rückholverfahren, zum Recycling	kg	42,37
Rückholverfahren, zur Energierückgewinnung	kg	0,00
Beseitigung	kg	0,85

Tabelle 9: C3 Entsorgung Kabelrinnensystem

C3 Entsorgung	Einheit	С3
Sammelverfahren, getrennt gesammelt	kg	37,00
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	0,00
Rückholverfahren, zur Wiederverwendung	kg	0,00
Rückholverfahren, zum Recycling	kg	36,27
Rückholverfahren, zur Energierückgewinnung	kg	0,00
Beseitigung	kg	0,73

Tabelle 10: C3 Entsorgung Gitterrinnensystem

C3 Entsorgung	Einheit	C3
Sammelverfahren, getrennt gesammelt	kg	38,18
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	0,00
Rückholverfahren, zur Wiederverwendung	kg	0,00
Rückholverfahren, zum Recycling	kg	37,43
Rückholverfahren, zur Energierückgewinnung	kg	0,00
Beseitigung	kg	0,75

Tabelle 11: C3 Entsorgung Kabelleitersystem

Deklarationsnummer: EPD-KTO-17.0 Veröffentlichungsdatum: 10.07.2024

Seite 31

Produktgruppe: Kabeltragsysteme

C3 Entsorgung	Einheit	C3
Sammelverfahren, getrennt gesammelt	kg	44,53
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	0,00
Rückholverfahren, zur Wiederverwendung	kg	0,00
Rückholverfahren, zum Recycling	kg	43,66
Rückholverfahren, zur Energierückgewinnung	kg	0,00
Beseitigung	kg	0,87

Tabelle 12: Modul C3: Weitspannsystem

Da es sich hierbei um ein einzelnes Szenario handelt, sind die Ergebnisse in der Gesamttabelle dargestellt.

C4 Deponierung

Nr.	Nutzungsszenario	Beschreibung
C4	Deponierung	Die nicht erfassbaren Mengen und Verluste in der Verwertungs-/Recyclingkette (C1 und C3) werden als "deponiert" (DE) modelliert.

Die Aufwände in C4 stammen aus der physikalischen Vorbehandlung, der Aufbereitung der Abfälle, als auch aus dem Deponiebetrieb. Die hier entstehenden Gutschriften aus Substitution von Primärstoffproduktion werden dem Modul D zugeordnet, z.B. Strom und Wärme aus Abfallverbrennung.

Da es sich hierbei um ein einzlenes Szenario handelt, sind die Ergebnisse in der Gesamttabelle dargestellt.

D Vorteile und Belastungen außerhalb der Systemgrenzen

Nr.	Nutzungsszenario	Beschreibung
D	Recyclingpotenzial	Stahl (verzinkt) und Stahlblech abzüglich Deponieanteile aus C3 und Stahlschrottanteile in den verwendeten Datensätzen aus A1 (Sekundärmaterialanteil). Es wurden demzufolge nur Gutschriften der Nettoschrottmengen berücksichtigt.

Die Werte in Modul "D" resultieren aus dem Rückbau am Ende der Nutzungszeit.

Da es sich hierbei um ein einzelnes Szenario handelt, sind die Ergebnisse in der Gesamttabelle dargestellt.

Impressum

Ökobilanzierer Life Cycle Engineering Experts GmbH Birkenweg 24

D-64295 Darmstadt

Programmbetreiber

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Telefon: +49 80 31/261-0 Telefax: +49 80 31/261 290

E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

Deklarationsinhaber

OBO Bettermann Produktion Deutschland GmbH & Co. KG Hüingser Ring 52 D-58710 Menden

Hinweise

Grundlage dieser EPD sind in der Hauptsache Arbeiten und Erkenntnisse des Instituts für Fenstertechnik e.V., Rosenheim (ift Rosenheim) sowie im Speziellen die ift-Richtlinie NA-01/4 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen . Systemen.

Layout

ift Rosenheim GmbH - 2021

Fotos (Titelseite)

OBO Bettermann Produktion Deutschland GmbH & Co. KG

© ift Rosenheim, 2024

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim

Telefon: +49 (0) 80 31/261-0 Telefax: +49 (0) 80 31/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de