

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-02/0024 vom 13. Mai 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS V

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-02/0024 vom 2. Januar 2020

Z36934.20

Europäische Technische Bewertung ETA-02/0024

Seite 2 von 34 | 13. Mai 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z36934.20 8.06.01-94/20

Europäische Technische Bewertung ETA-02/0024

Seite 3 von 34 | 13. Mai 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "fischer Injektionssystem FIS V" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS V, fischer FIS VW High Speed oder fischer FIS VS Low Speed und einem Stahlteil gemäß Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung				
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3 bis B 6, C 1 bis C 8				
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4				
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 und C 10				
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 11 bis C 14				

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z36934.20 8.06.01-94/20

Europäische Technische Bewertung ETA-02/0024

Seite 4 von 34 | 13. Mai 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

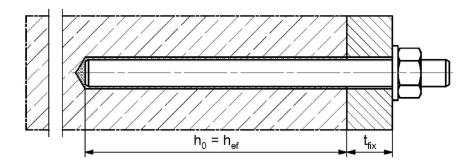
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

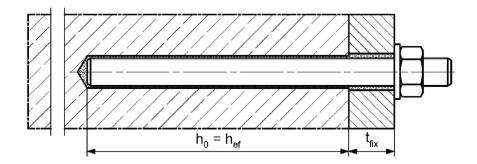
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 13. Mai 2020 vom Deutschen Institut für Bautechnik

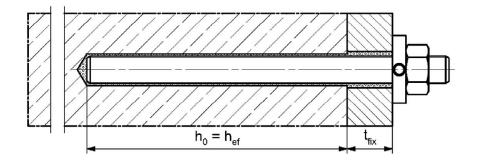
BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt: Baderschneider


Z36934.20 8.06.01-94/20


Einbauzustände Teil 1

fischer Ankerstange


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

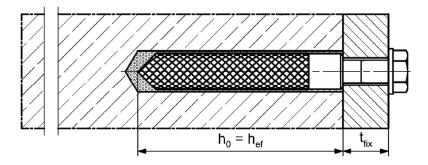
hef = Effektive Verankerungstiefe

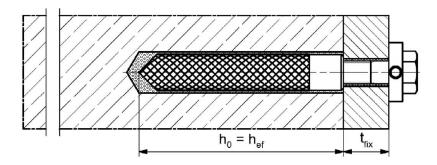
t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V

Produktbeschreibung

Einbauzustände Teil 1


Anhang A 1


Einbauzustände Teil 2

fischer Innengewindeanker RG MI

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

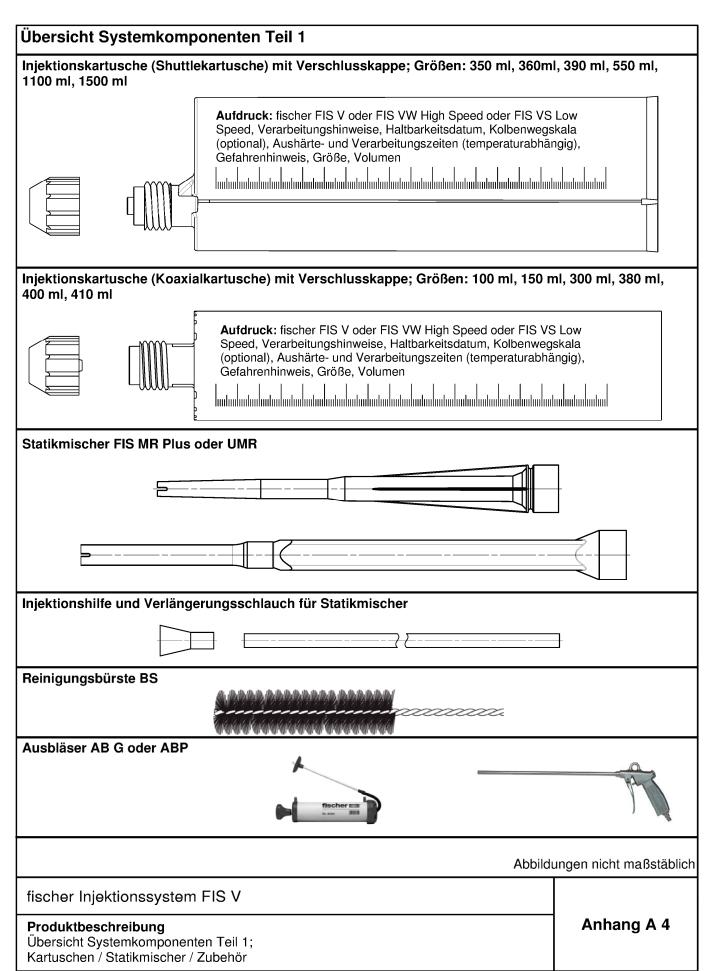
h₀ = Bohrlochtiefe

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V

Produktbeschreibung


Einbauzustände Teil 2

Anhang A 2

Einbauzustände Teil 3 **Betonstahl** fischer Bewehrungsanker FRA Vorsteckmontage h_0 Durchsteckmontage (Ringspalt mit Mörtel verfüllt) h_0 Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe h_{ef} = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS V Anhang A 3 Produktbeschreibung Einbauzustände Teil 3

Übersicht Systemkomponenten Teil 2 fischer Ankerstange Größen: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter fischer Verfüllscheibe mit Injektionshilfe **Betonstahl** Nenndurchmesser: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 28\$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Injektionssystem FIS V Anhang A 5 Produktbeschreibung Übersicht Systemkomponenten Teil 2; Stahlteile

Teil	Bezeichnung		Material	
1	Injektionskartusche		Mörtel, Härter, Füllstoffe	
		Stahl	Nichtrostender Stahl R	Hochkorrosions- beständiger Stahl HCR
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:2014 der Korrosionswiderstands klasse CRC V nach EN 1993-1-4:2015
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm² $A_5 >$ 12% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% \text{ Bruchdehnung}$	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm² $A_5 > 12\%$ Bruchdehnung
			ng A ₅ > 8%, wenn keine Anfordistungskategorie C2 zu berück	
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Handelsübliche Schraube oder Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung
7	fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL der ge fuk = ftk = k·fyk	ng, Klasse B oder C mit f _{yk} und mäß EN 1992-1-1/NA	k
9	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom Rir oder C mit fyk und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:2010 fuk = ftk = k · fyk	EN ISO 3506-1:20 1.4401, 1.4404, 1. 1.4362, 1.4062 ge Korrosionswiderst EN 1993-1-4:2015 1.4565; 1.4529, ge	4571, 1.4578, 1.4439, mäß EN 10088-1:2014 der andsklasse CRC III nach s emäß EN 10088-1:2014 de andsklasse CRC V nach
· ·	1 1 . 2 . 1 . 2	FIO.V		
tisc	her Injektionssystem	n FIS V		
Pro	duktbeschreibung			Anhang A 6

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien FIS V mit ... Beanspruchung der Verankerung fischer Betonstahl Ankerstange fischer Innengewinde-Bewehrungsanker anker RG MI **FRA WARRANTAN AND THE STATE OF THE** Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD, Heller "Duster Expert"; Bohrernenndurchmesser (d₀) Bosch "Speed 12 mm bis 35 mm Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") Tabelle: Tabelle: Tabelle: Tabelle: Alle Alle Alle ungerissenen Statische und C1.1 C2.1 C3.1 C3.2 Größen Größen Größen Beton Alle quasi-statische C4.1 C4.1 C4.1 C4.1 Größen φ 10 bis M8 bis gerissenen C5.1 C6.1 C7.1 C8.1 Belastung, im _2) M30 **Beton** φ 28 C10.1 C9.1 C9.2 C10.2 Tabelle: M10 Seismische C11.1 C11) Leistungsbis C12.1 M30 kategorie C13.1 _2) _2) 2) (nur Hammer-M12 Tabelle: bohren mit C11.1 M16 Standardbohrer / C21) M20 C12.1 Hohlbohrer) M24 C14.1 Trockener oder nasser alle Größen 11 Beton Nutzungskategorie Wasser-_2) _2) 12 M 12 bis M 30 Alle Größen gefülltes Bohrloch Einbaurichtung D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) $T_{i,min} = -10$ °C bis $T_{i,max} = +40$ °C Einbautemperatur Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C bereich I maximale Langzeittemperatur +50 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +120 °C; -40 °C bis +120 °C bereich II maximale Langzeittemperatur +72 °C) 1) Nicht geeignet für FIS VW High Speed oder FIS VS Low Speed 2) keine Leistung bewertet fischer Injektionssystem FIS V Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle A6.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.

Einbau:

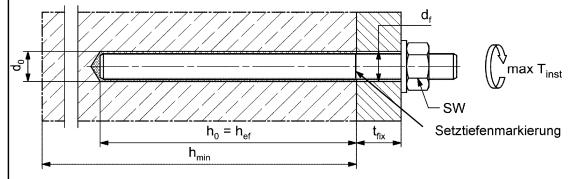
- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS V

Verwendungszweck
Spezifikationen (Teil 2)

Anhang B 2

Tabelle B3.1:	Montageken	nwerte f	ür Anke ı	rstan	gen							
Ankerstangen			Gewinde	M6	M8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite		SW		10	13	17	19	24	30	36	41	46
Bohrernenndurchm	esser	d₀		8	10	12	14	18	24	28	30	35
Bohrlochtiefe		h₀						$h_0 = h_e$	f			
Effektive		h _{ef, min}		50	60	60	70	80	90	96	108	120
Verankerungstiefe		h _{ef, max}] [72	160	200	240	320	400	480	540	600
Minimaler Achs- un Randabstand	d	S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Durchmesser des	Vorsteck- montage	df		7	9	12	14	18	22	26	30	33
Durchgangsloch - im Anbauteil 	Durchsteck- montage	df		9	12	14	16	20	26	30	33	40
Minimale Dicke des Betonbauteils h _{min}					h _{ef} + 30	(≥100)		r	n _{ef} + 2d	0	
Maximales Montagedrehmoment max Tin			[Nm]	5	10	20	40	60	120	150	200	300


Prägung (an beliebiger Stelle) fischer Ankerstange:

Stahl galvanisch verzinkt FK ¹⁾ 8.8	• oder +	Stahl feuerverzinkt FK ¹⁾ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

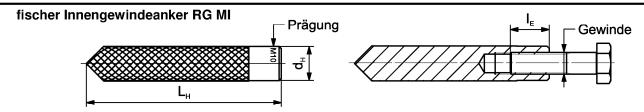
1) FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- · Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

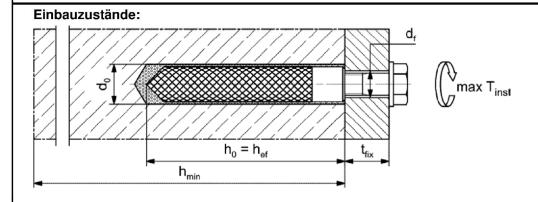
Abbildungen nicht maßstäblich


fischer Injektionssystem FIS V

Verwendungszweck
Montagekennwerte Ankerstangen

Anhang B 3

Innengewindeanker RG MI	Ge	ewinde	M8	M10	M12	M16	M20
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22	28
Bohrernenn- durchmesser	d ₀		14	18	20	24	32
Bohrlochtiefe	h ₀] [$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effektive Verankerungstiefe ($h_{ef} = L_{H}$)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125
Durchmesser des Durch- gangsloch im Anbauteil	df		9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	I _{E,max}	1 [18	23	26	35	45
Minimale Einschraubtiefe	I _{E,min}	1 [8	10	12	16	20
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Abbildungen nicht maßstäblich

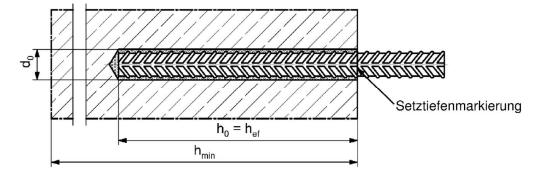
fischer Injektionssystem FIS V

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI

Anhang B 4

Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	
Bohrernenndurchmesser	d₀		10 12	12 14	14 16	18	20	25	30	35	
Bohrlochtiefe			$h_0 = h_{\text{ef}}$								
Effektive	h _{ef,min}		60	60	70	75	80	90	100	112	
Verankerungstiefe	h _{ef,max}		160	200	240	280	320	400	500	560	
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130	
Mindestdicke des Betonbauteils	h _{min}			_{ef} + 30 ≥ 100)			h∈	ef + 2d ₀			


¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V

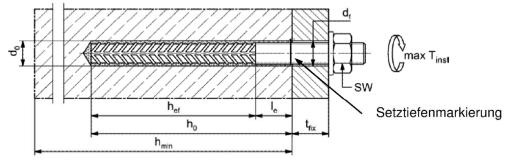
Verwendungszweck

Montagekennwerte Betonstahl


Anhang B 5

Bewehrungsanker FRA		Ge	Gewinde		21)	M16	M20	M24
Stabnenndurchme	sser	ф		12	2	16	20	25
Schlüsselweite		SW		19)	24	30	36
Bohrernenndurchn	nesser	d_0		14	16	20	25	30
Bohrlochtiefe		h₀				h _{ef}	+ le	
Effektive		h _{ef,min}		70)	80	90	96
Verankerungstiefe	•	h _{ef,max}		14	0	220	300	380
Abstand Betonobe Schweißstelle	rfläche zur	l _e				100		
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	55	5	65	85	105
Durchmesser des	Vorsteck- montage	≤ d _f		14	L	18	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		18	3	22	26	32
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30			h ₀ + 2d ₀	
Maximales Montagedrehmom	ent	max T _{inst}	[Nm]	40)	60	120	150

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

Prägung stirnseitig z. B.:

FRA (für nichtrostenden Stahl);
FRA HCR (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V

Verwendungszweck
Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 6

Tabelle B7.1: Kennwerte der Reinigungsbürsten BS (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

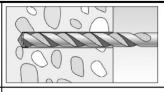
Bohrernenn- durchmesser	d₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Stahlbürsten- durchmesser BS	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Tabelle B7.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

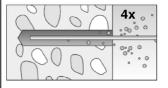
Temperatur im	Maxim	ale Verarbeitur t _{work}	ngszeit	Minimale Aushärtezeit 1) t _{cure}			
Verankerungsgrund [°C]	FIS VW High Speed	FIS VW FIS VS FIS VW FIS V			FIS VS Low Speed		
-10 bis -5 ²⁾	-	-	-	12 h	-	-	
> -5 bis 0 ²⁾	5 min	-	-	3 h	24 h	-	
> 0 bis 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h	
> 5 bis 10	3 min	9 min	20 min	50 min	90 min	3 h	
> 10 bis 20	1 min	5 min	10 min	30 min	60 min	2 h	
> 20 bis 30	-	4 min	6 min	-	45 min	60 min	
> 30 bis 40	-	2 min	4 min	-	35 min	30 min	

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

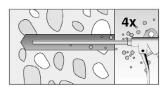
ľ	fischer Injektionssystem FIS V	
-	Verwendungszweck Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten	Anhang B 7


²⁾ Minimale Kartuschentemperatur +5°C

Montageanleitung Teil 1

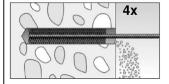

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1



Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

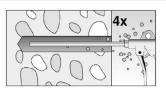
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen

Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3



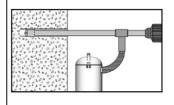
Bohrloch viermal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B7.1**

4

Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch viermal von Hand ausblasen

Bei h_{ef} > 12d und / oder d₀ ≥ 18 mm Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

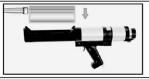
Mit Schritt 5 fortfahren

fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 1 Anhang B 8

Montageanleitung Teil 2

Kartuschenvorbereitung



Verschlusskappe abschrauben

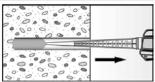
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

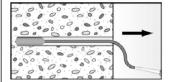
6

Kartusche in die Auspresspistole legen.

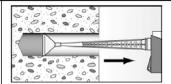
7

8




Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Mit Schritt 8 fortfahren

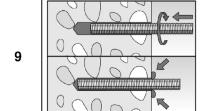

Mörtelinjektion

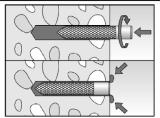
Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

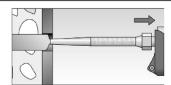
Mit Schritt 9 fortfahren


fischer Injektionssystem FIS V


Verwendungszweck Montageanleitung Teil 2 Anhang B 9

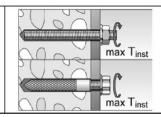
Montageanleitung Teil 3

Montage Ankerstange und fischer Innengewindeanker RG MI

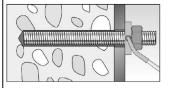


Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. fischer Zentrierkeile) oder fischer Überkopf-Clips fixieren

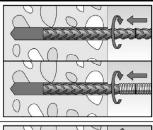

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

10

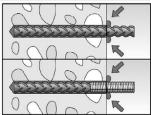

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7.2**

11

Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B4.1**


Option

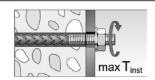
Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden.Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).


ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Anker)

Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, tcure siehe **Tabelle B7.2**

12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B6.1**

fischer Injektionssystem FIS V

Verwendungszweck Montageanleitung Teil 3 Anhang B 10

Z40961.20

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzug- beanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen**

	Dod 10p1 c		,				9						9		
Anke	r- / Gewindestange				М6	M8	M10	M12	M16	M20	M24	M27	M30		
Zugtr	agfähigkeit, Stahlversa	igen ³⁾													
s,x	0.11		4.8		8	15(13)	23(21)	33	63	98	141	184	224		
ے ا	Stahl galvanisch verzinkt	ķ	5.8]	10	19(17)	29(27)	43	79	123	177	230	281		
Charakt. Widerstand N _{RK,s}	VETZITIKL	Festigkeits- klasse	8.8	[kN]	16	29(27)	47(43)	68	126	196	282	368	449		
Sha rsta	Nichtrostender Stahl R	stig	50	ן נאואן 	10	19	29	43	79	123	177	230	281		
Ge	und Hochkorrosions-	Fe	70		14	26	41	59	110	172	247	322	393		
	beständiger Stahl HCR		80		16	30	47	68	126	196	282	368	449		
	icherheitsbeiwerte 1)														
_ ال	Stahl galvanisch verzinkt		4.8						1,50						
Ms,N	verzinkt	its-	5.8						1,50						
Jer Z		tigkeit lasse	8.8	 [-]	1,50										
ellsicherheits beiwert /ms,n	Nichtrostender Stahl R	Festigkeits- klasse	50	"	2,80										
lë a	und Hochkorrosions-	டீ	70					1,	50 ²⁾ / 1,	87					
Ľ.	beständiger Stahl HCR		80						1,60						
	ragfähigkeit, Stahlversa	gen ³⁾													
Ohne	Hebelarm					1									
关,	Stahl galvanisch verzinkt	eits- e	4.8		4	9(8)	14(13)	20	38	59	85	110	135		
÷: ≥			5.8		6		17(16)	25	47	74	106	138	168		
Charakt. erstand V ^o _{Rk,s}		gke	stigkeit klasse 05 88 88	[kN]	8		23(21)	34	63	98	141	184	225		
St St	Nichtrostender Stahl R	Festigkeits- klasse	50		5	9	15	21	39	61	89	115	141		
Wide	und Hochkorrosions- beständiger Stahl HCR		70		7	13	20	30	55	86	124	161	197		
			80		8	15	23	34	63	98	141	184	225		
	itätsfaktor		k ₇	[-]					1,0						
MIT H	ebelarm		4.0	I	0	45(40)	00(07)		100	050	140	005	000		
, ä	Stahl galvanisch		4.8		6 7		30(27)	52 CE	133	259	448	665	899		
를 높 -: 둘	verzinkt	Festigkeits- klasse	5.8		12	1	37(33) 60(53)	65 105	166 266	324 519	560 896	833 1333	1123 1797		
Charakt.		stigkeit klasse	8.8 50	[Nm]	7	19	37	65	166	324	560	833	1123		
	Nichtrostender Stahl R und Hochkorrosions-	Fes'	70		10	26	52	92	232	454	784	1167	1573		
Charakt. Widerstand M ^o Rk,	beständiger Stahl HCR		80		12	30	60	105	266	519	896	1333	1797		
<u> </u>	icherheitsbeiwerte 1)						1 00	100		0.0	1 000	1000	1707		
			4.8						1,25						
its->:	Stahl galvanisch	40	5.8						1,25						
rhe Z	verzinkt	eits	8.8						1,25						
che vert	Nichtrostender Stahl R	Festigkeits Klasse	50	[-]					2,38						
eilsicherheits beiwert ms.v	verzinkt Nichtrostender Stahl R und Hochkorrosions-	Fes	70					1.	25 ²⁾ / 1,	 56					
🖺 🖺	beständiger Stahl HCR		80					.,,	1,33						
									,						

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1:													
			prucr	nung		er Innengev							
					M8	M10	M12	M16	M20				
Zugtragfähigkei	t, Stah	lversagen				1		T					
Charakt		Festigkeits-							123				
	$N_{Rk.s}$	klasse		[kN]					179				
Schraube		Festigkeits-	R	[]	26		59	110	172				
		Klasse 70	HCR		26	41	59	110	172				
Teilsicherheitsb	eiwert	e ¹⁾											
		Festigkeits-	5.8				1,50						
Teilsicherheits-	26	klasse	8.8				1,50						
beiwerte	γMs,N	Festigkeits-	R	[-]	1,87								
	Klasse 70 _F						1,87						
Quertragfähigke	it, Stal	hlversagen											
Ohne Hebelarm													
		. oongo	5.8		9,2	14,5	21,1	39,2	62,0				
	V^0 Rk,s	klasse	8.8	5.8 19 29 43 79 12 8.8 29 47 68 108 17 HCR 26 41 59 110 17 5.8 1,50 1,50 8.8 1,50 R 1,87 HCR 1,87 1,88 20,3 29,5 54,8 86, 1,0 5.8 30 60 105 266 51 1,0 5.8 30 60 105 266 51 1,25 26 52 92 232 45 5.8 38 1,25	14,6	23,2	33,7	54,0	90,0				
	V *Rk,s	Festigkeits-	R		12,8	20,3	29,5	54,8	86,0				
		Klasse 70	HCR		86,0								
Duktilitätsfaktor			k ₇	[-]			1,0						
Mit Hebelarm													
		Festigkeits-	5.8		20	39	68	173	337				
	M ⁰ Rk,s	klasse	8.8	[mI/J]	30	60	105	266	519				
Schraube	iVI⁻Rk,s	Festigkeits-	R	נווואיון	26	52	92	232	454				
		Klasse 70	HCR		26	52	92	232	454				
Teilsicherheitsb	eiwert	e ¹⁾											
		Festigkeits-	5.8				1,25						
Teilsicherheits-		klasse	8.8	, ,			1,25						
Teilsicherheitsber Teilsicherheitsber Deiwerte Quertragfähigkei Ohne Hebelarm Charakt. Widerstand mit Schraube Duktilitätsfaktor Mit Hebelarm Charakt. Widerstand mit Schraube Teilsicherheitsber	γMs,V	Festigkeits-	R	[-]			1,56						
		Klasse 70	HCR				1,56						

1) Falls keine abweichenden	nationalen	Reaelunaen	vorliegen
-----------------------------	------------	------------	-----------

fischer Injektionssystem FIS V	
Leistungen	Anhang C 2
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /	
Querzugbeanspruchung von fischer Innengewindeankern RG MI	

Tabelle C3.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug-/ Querzugbeanspruchung von Betonstahl											
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28	
Zugtragfähigkeit, Stahlversage	n				-	-	-			•	
Charakteristischer Widerstand	N _{Rk,s}	[kN]				As ·	f uk ¹⁾				
Quertragfähigkeit, Stahlversage	en										
Ohne Hebelarm											
Charakteristischer Widerstand	V^0 Rk,s	[kN]				0,5 · A	∖s · f _{uk} ¹)				
Duktilitätsfaktor	k ₇	[-]				1	,0				
Mit Hebelarm											
Charakteristischer Widerstand	M^0 Rk,s	[Nm]				1,2 · W	√ _{el} · f _{uk} ¹)				

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C3.2: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug-/ Querzugbeanspruchung von **fischer Bewehrungsankern FRA**

fischer Bewehrungsanker FRA			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversage	n					
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	63	111	173	270
Teilsicherheitsbeiwert 1)						
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4	
Quertragfähigkeit, Stahlversag	en					
Ohne Hebelarm						
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124
Duktilitätsfaktor	k ₇	[-]		1	,0	
Mit Hebelarm						
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]	92	233	454	785
Teilsicherheitsbeiwert 1)					•	•
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V

Leistungen
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /
Querzugbeanspruchung von Betonstahl und fischer Bewehrungsanker FRA

Größe							ΔΙ	le Grö	ßen						
Zugbelastung							Λι	ic are	JC11						
Montagebeiwert		26:	[-]		Sigh	e Anhä	nge C.	5 his C	8 und	C 13 h	is C14				
	etondruckfestigkeit	γinst			01011	ic / tilla	iige o .	010 0	O dila	0 10 0	13 0 1 +				
i aktorem lar be	C25/30	CII > C	20,23					1,05							
_	C30/37			1,10											
	C35/45			·											
Erhöhungs- faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]	1,15											
iantoi iai tak –	C40/50							1,19							
-								1,22							
Varaanan durah	C50/60							1,26							
Versagen durch								1,0 h _e							
Dendebetend	$\frac{h / h_{ef} \ge 2.0}{2.0 \cdot h / h}$	_					4.0								
Randabstand _	$\frac{2.0 > h / h_{ef} > 1.3}{h / h_{ef} > 1.3}$	C _{cr,sp}	[mm]				-	6 h _{ef} - 1							
Achachetered	h / h _{ef} ≤ 1,3		1	2,26 h _{ef} 2 c _{cr,sp}											
Achsabstand	. konolfäuminen D	S _{cr,sp}	lober:-					∠ Ccr,sp)						
	n kegelförmigen Be		ISDruc	rı				11.0							
Ungerissener Bete		k _{ucr,N}	[-]					11,0							
Gerissener Beto	<u>n</u>	k cr,N						7,7							
Randabstand		Ccr,N	[mm]					1,5 h _e							
Achsabstand		S _{cr,N}						2 C _{cr,N}							
Faktor für Daue															
Temperaturbere	ich		[-]			C / 80 °C	<u> </u>				120 °C				
Faktor		$\Psi^0_{ m sus}$	[-]		(0,74				0,	37				
Querzugbelastı	ıng														
Montagebeiwert		γinst	[-]					1,0							
Betonausbruch	auf der lastabgew	andte	n Seite	•											
Faktor für Beton	ausbruch	k ₈	[-]					2,0							
Betonkantenau	sbruch														
Effektive Länge unter Querzugbe		lf	[mm]		Für d _{nom} Für d _{nom}				,)				
Rechnerische [Durchmesser														
Größe				M6	M8	M10	M12	M16	M20	M24	M27	M36			
fischer Ankersta Standard-Gewin		d _{nom}		6	8	10	12	16	20	24	27	30			
fischer Innengewindear	ker RG MI	d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)			
fischer Bewehru	ngsanker FRA	d_{nom}		_1)	_1)	_1)	12	16	20	25	_1)	_1)			
Stabnenndurchn	nesser		ф	8	10	12	1	4	16	20	25	28			
Betonstahl		d_{nom}	[mm]	8	10	12	1	4	16	20	25	28			
¹⁾ Dübelvariar	te nicht Bestandteil	der E	TA		•	·	İ	•	·						
fischer Injekt	ionssystem FIS	V													
Leistungen	he Werte für die Zu				-1 14					An	hang (2 4			

Tabelle C5.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen
	und Standard-Gewindestangen im hammergebohrten; ungerissener oder
	gerissener Beton

genssen	iei Deti	OII									
Anker- / Gewindestange			М6	M8	M10	M12	M16	M20	M24	M27	M30
Kombiniertes Versagen durc	h Herau	ısziehen ı	und Be	tonaus	bruch						
Rechnerischer Durchmesser	d	[mm]	6	8	10	12	16	20	24	27	30
Ungerissener Beton											
Charakteristische Verbundtr	agfähig	keit im un	igeriss	enen B	eton C	20/25					
Hammerbohren mit Standard-	oder Hol	<u>nlbohrer (t</u>	rocken	<u>er oder</u>	nasser	Beton)					
Tempe- I: 50 °C / 80 °C	_	[N/mm ²]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
ratur- H: 72 °C / 120 °C	^τ Rk,ucr	[[N/]]]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammerbohren mit Standard-	oder Ho	hlbohrer (v	wasser	gefülltes	s Bohrlo	och) 1)					
Tempe- I: 50 °C / 80 °C		[N1/::-2]	_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
ratur- H: 72 °C / 120 °C	T _{Rk,ucr}	r,ucr [N/mm²] -	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Montagebeiwerte		•	l								
Trockener oder nasser Beton							1,0				
Wassergefülltes Bohrloch	γinst	[-]	_2)	_2)	_2)			1,2	2 1)		
Gerissener Beton											
Charakteristische Verbundtr	agfähig	keit im ge	rissen	en Beto	on C20/	25					
Hammerbohren mit Standard-	oder Ho	hlbohrer (1	trocken	<u>er oder</u>	nasser	Beton)					
Tempe- I: 50 °C / 80 °C		[N] / yee yee 21	_2)	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
ratur- II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammerbohren mit Standard-	oder Ho	hlbohrer (v	wasser	gefülltes	Bohrlo	ch) 1)		•	•		
Tempe- I: 50 °C / 80 °C		FA.17 27	_2)	_2)	_2)	5,0	5,0	4,5	4,0	3,5	3,5
ratur- H: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Montagebeiwerte		•					•	•			
Trockener oder nasser Beton		r 1					1,0				
Wassergefülltes Bohrloch	γinst	[-]	_2)	_2)	_2)			1,3	2 1)		

¹⁾ Nur Koaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 5

²⁾ Keine Leistung bewertet

Tabelle C6.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten Bohrloch; ungerissener Beton

Innengewindeanker RG MI			М8	M10	M12	M16	M20
Kombiniertes Versagen durc	ch Herau	ısziehen i	und Betonau	sbruch			
Rechnerischer Durchmesser	d	[mm]	12	16	18	22	28
Ungerissener Beton							
Charakteristische Verbundtı	agfähig	keit im un	igerissenen	Beton C20/2	5		
Hammerbohren mit Standard-	oder Hol	<u>nlbohrer (t</u>	rockener ode	r nasser Betc	<u>on)</u>		
Tempe- I: 50 °C / 80 °C	- 7	[N/mm²]	10,5	10,0	9,5	9,0	8,5
bereich II: 72 °C / 120 °C	TRk,ucr	[[[]]]	9,0	8,0	8,0	7,5	7,0
Hammerbohren mit Standard-	oder Ho	hlbohrer (v	<u>wassergefüllt</u>	es Bohrloch ¹	<u>))</u>		
Tempe- I: 50 °C / 80 °C	- -	 [N/mm²]	10,0	9,0	9,0	8,5	8,0
bereich II: 72 °C / 120 °C	TRk,ucr	[[N/111111-]	7,5	6,5	6,5	6,0	6,0
Montagebeiwerte							
Trockener oder nasser Beton	- 00.	[_]			1,0		
Wassergefülltes Bohrloch	γinst	[-]			1,2 ¹⁾		

¹⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI	Anhang C 6

Tabelle C7.1: Charakte hammerç										
Stabnenndurchmesser		ф	8	10	12	14	16	20	25	28
Kombiniertes Versagen durc	h Herau		und Bet	onausbi	ruch					
Rechnerischer Durchmesser	d	[mm]	8	10	12	14	16	20	25	28
Ungerissener Beton										
Charakteristische Verbundtr	agfähig	keit im un	gerisse	nen Bet	on C20/	25				
Hammerbohren mit Standard- od	der Hohll	ohrer (trod	ckener o	der nasse	er Beton)					
Tempe- I: 50 °C / 80 °C			11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
ratur-	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Montagebeiwerte			-,-						.,,	.,-
Trockener oder nasser Beton	γinst	[-]				1	,0			
Gerissener Beton										
Charakteristische Verbundtr	agfähig	keit im ge	rissene	n Beton	C20/25					
Hammerbohren mit Standard-	oder Ho	hlbohrer (1	rockene	r oder na	asser Be	ton)				
Tempe- I: 50 °C / 80 °C			_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
ratur-	$ au_{Rk,cr}$	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Montagebeiwerte					1 -,-		-,-	-,-		-,-
Trockener oder nasser Beton	γinst	[-]				1	,0			
fischer Injektionssystem	FIS V									

Tabelle C8.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungs-
	ankern FRA im hammergebohrten Bohrloch; ungerissener oder
	gerissener Beton

gerissene	er Beto	on		_		
fischer Bewehrungsanker FR	Α		M12	M16	M20	M24
Kombiniertes Versagen durch	h Herau	sziehen ı	und Betonausbi	ruch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristische Verbundtra	ıgfähigk	keit im un	igerissenen Bet	on C20/25		
Hammerbohren mit Standard- o	der Hor	<u>ılbohrer (t</u>	rockener oder na	asser Beton)		
Tempe- I: 50 °C / 80 °C		[N 1 / res res 2]	11,0	10,0	9,5	9,5
ratur-	τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]		1,	0	
Gerissener Beton						
Charakteristische Verbundtra	ıgfähigk	ceit im ge	rissenen Beton	C20/25		
<u> Hammerbohren mit Standard- c</u>	der Hol	nlbohrer (1	trockener oder na	asser Beton)		
Tempe- I: 50 °C / 80 °C		[N1/mamma2]	5,0	5,0	4,5	4,0
ratur- ————————————————————————————————————	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5
Montagebeiwerte						
Trockener oder nasser Beton	γinst	[-]	1,0			

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA

Ankerst	ange	M6	M8	M10	M12	M16	M20	M24	M27	M30	
Verschiebungs-Faktoren für Zuglast¹)											
Ungeris	sener Beton; T	emperatu	ırbereich	I, II							
δ _{N0-Faktor}	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
δN∞-Faktor		0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Gerisseı	ner Beton; Tem	peraturb	ereich I, II	ĺ							
SN0-Faktor	[mm/(NI/mm2)]	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15	
δ _{N∞-Faktor}	[mm/(N/mm²)]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40	
Verschie	ebungs-Faktor	en für Qu	erlast ²⁾								
Ungerissener oder gerissener Beton; Temperaturbereich I, II											
SV0-Faktor	[mm/kN]]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
δv∞-Faktor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V^\infty} = \delta_{V^\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C9.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	M8	M10	M12	M16	M20					
Verschiebungs-Faktoren für Zuglast¹)											
Ungerissener oder gerissener Beton; Temperaturbereich I, II											
δN0-Faktor	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14					
δ _{N∞-Faktor}	[[mim/(iv/mim=)]	0,13	0,14	0,15	0,16	0,18					
Verschie	bungs-Faktor	en für Querlast ²⁾									
Ungerissener oder gerissener Beton; Temperaturbereich I, II											
δvo-Faktor	[mama/lsN]]	0,12	0,12	0,12	0,12	0,12					
δv∞-Faktor	[mm/kN]	0,14	0,14	0,14	0,14	0,14					

1) Berechnung der effektiven Verschiebung:

 $\delta \text{N0} = \delta \text{N0-Faktor} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta v_0 = \delta v_{0\text{-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V

Leistungen

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 9

²⁾ Berechnung der effektiven Verschiebung:

³⁾ Keine Leistung bewertet

Leistungen

Stabnenn- lurchmes	A	8	10	12	14	16	20	25	28
/erschieb	ungs-Faktore	en für Zugl	ast¹)						
Jngerisse	ener Beton; T	emperatur	bereich I, II						
N0-Faktor	mm/(N/mm²)]-	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11
N∞-Faktor	111111/(14/111111-)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13
aerissene	er Beton; Tem	peraturbe	reich I, II						
N0-Factor Γι	mm/(N/mm²)]-	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14
N∞-Factor		_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37
/erschieb	ungs-Faktore	en für Que	rlast ²⁾						
Jngerisse	ener oder geri	issener Be	ton; Temp	eraturbere	ich I, II				
V0-Faktor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08
V∞-Faktor	[IIIIII/KIN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09
1) Berech	nung der effel	ktiven Vers	chiebung:		²⁾ Berechnu	ıng der effe	ktiven Vers	chiebung:	
$\delta_{\text{N0}} = \delta$	N0-Faktor · τEd				$\delta v_0 = \delta v_0$	Faktor · VEd			
$\delta_{N\infty}=\delta$	N∞-Faktor ˙ τEd				$\delta_{V\infty}=\delta_{V\infty}$	-Faktor · VEd			
(τ _{Ed} : Bemessungswert der (V _{Ed} : Bemessungswert der einwirkenden Zugspannung) einwirkenden Querkraft)									
3) Keine L	eistung bewe	rtet							
Tabelle	C10.2: Vers	schiebun	gen für fi	scher Be	ewehrung	sanker F	RA		
fischer Bewehrungs- anker FRA		M	12	M16		M20		M24	

fischer Bewehrungs- anker FRA		M12	M16	M20	M24						
Verschie	bungs-Faktor	en für Zuglast¹)									
Ungerise	sener Beton; T	emperaturbereich I, I									
$\delta_{ extsf{N0-Faktor}}$	[mm/(N/mm²)]	0,10	0,10	0,10	0,10						
δN∞-Faktor	[[111111/(14/111111-)]	0,12	0,12	0,12	0,13						
Gerisser	ner Beton; Ten	nperaturbereich I, II									
δ N0-Faktor	[mm/(N/mm²)]	0,12	0,13	0,13	0,13						
δ _{N∞-Faktor}	[[[[[[]]/([[]/[[[]]-)]	0,30	0,30	0,30	0,35						
Verschie	/erschiebungs-Faktoren für Querlast²)										
Ungerise	sener oder ger	issener Beton; Temp	eraturbereich I, II								
δ vo-Faktor	[mm/kN]	0,10	0,10	0,09	0,09						
δv∞-Faktor	[IIIII/KIN]	0,11	0,11	0,10	0,10						
1) Bered	chnung der effe	ktiven Verschiebung:	²⁾ Bered	hnung der effektiven V	erschiebung:						
δΝ0 =	δ N0-Faktor · τ Ed		δνο =	δ vo-Faktor · V Ed							
δ _{N∞} =	δ _{N∞-Faktor} · τ _{Ed}		$\delta_{V\infty} =$	$\delta_{V\infty\text{-Faktor}}\cdot V_{\text{Ed}}$							
	Bemessungswerkenden Zugsp		(V _{Ed} : Bemessungswert der einwirkenden Querkraft)								
fischer	fischer Injektionssystem FIS V										

Z40961.20 8.06.01-94/20

Verschiebungen Betonstahl und fischer Bewehrungsanker FRA

Tabelle C11.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Stahl galvanisch verzinkt Stahl Kersagen Stahl Gewindestangen, Leistungskategorie C1 Verzinkt Stahl Gewindestangen, Leistungskategorie C2 Verzinkt Stahl Gewindestangen, Leistungskategorie C1 Verzinkt Stahl Gewindestangen, Leistungskategorie C2 Verzinkt Verzinkt Verzinkt Stahl Gewindestangen, Leistungskategorie C2 Verzinkt Verzinkt Verzinkt Verzinkt Verzin												
Stahl galvanisch verzinkt 1	Anker- /	Gewindestange				M10	M12	M16	M20	M24	M27	M30
Stahl galvanisch verzinkt	Zugtragt	fähigkeit, Stahlversage	n¹)									
Verzinkt 1	fischer A	Ankerstangen und Stan	dard-	Gew	/inde	stangen,	Leistung	skategor	ie C1 ²⁾			
Stahl galvanisch Stahl galva	- J- L	Stahl galvanisch		5.8		29(27)	43	79	123	177	230	281
Stahl galvanisch Stahl galva	Vide k,s,c		its o	8.8		47(43)	68	126	196	282	368	449
Stahl galvanisch Stahl galva	F. V.	Nichtrostender Stahl R	igke	50	[kN]	29	43	79	123	177	230	281
Stahl galvanisch Stahl galva	aral	und Hochkorrosions-	est	70		41	59	110	172	247	322	393
Stahl galvanisch verzinkt	Ch.	beständiger Stahl HCR	"	80		47	68	126	196	282	368	449
Stahl galvanisch verzinkt	fischer A	Ankerstangen und Stan	dard-	Gew	vinde	stangen,	Leistung	skategor	ie C2 2)		•	
Comparison Com										_4)	_4)	_4)
Comparison Com	akt. tan	verzinkt	eits	8.8		_4)	61	116	173	_4)	_4)	_4)
Comparison Com	Chara Miders NRk,s,	Nichtrostender Stahl R	tigk ass	50	[kN]	_4)	39	72	108	_4)	_4)	_4)
Comparison Com			Fes.				53	101	152			_4)
Stahl galvanisch verzinkt		beständiger Stahl HCR		80		_4)	61	116	173	_4)	_4)	_4)
Stahl galvanisch verzinkt	Quertrag	gfähigkeit, Stahlversag	en oh	ne F	lebela	arm ¹⁾						
Verzinkt	fischer A	Ankerstangen, Leistunç	gskate	egor	ie C1	2)						
Standard-Gewindestangen, Leistungskategorie C12 Stahl galvanisch verzinkt Stahl	- 2 - 2		١.	5.8		17(16)	25	47	74	106	138	168
Standard-Gewindestangen, Leistungskategorie C12 Stahl galvanisch verzinkt Stahl	Vide k,s, c		estigkeits klasse	8.8	[kN]	23(21)	34	63	98	141	184	225
Standard-Gewindestangen, Leistungskategorie C12 Stahl galvanisch verzinkt Stahl	. ξt. Σ ⊼.	Nichtrostender Stahl R		50		15	21	39	61	89	115	141
Standard-Gewindestangen, Leistungskategorie C12 Stahl galvanisch verzinkt Stahl	iara tanc	und Hochkorrosions-				20	30	55	86	124	161	197
Stahl galvanisch verzinkt	ch st	beständiger Stahl HCR		80		23	34	63	98	141	184	225
Verzinkt	Standar	d-Gewindestangen, Lei	stung	jska	tegor	ie C1 ²⁾						
Stahl galvanisch Stahl Rame	q	Stahl galvanisch	<u>ا</u>	5.8		12(11)	17	33	52	74	97	118
Stahl galvanisch Stahl R Stahl R Stahl R Stahl HCR Stahl R Stahl HCR Stahl R Stahl Ger Stahl HCR Stahl R Stahl Ger Stahl Ger Stahl HCR Stahl Ger Stahl HCR Stahl Ger Stahl	akt. tan		eits	8.8		16(14)	24	44	69	99	129	158
Stahl galvanisch verzinkt Stahl R Stahl R Stahl HCR Stahl R Stahl HCR Stahl R Stahl Galvanisch verzinkt Stahl Galvanisch ver	nara ers Rk,s,	Nichtrostender Stahl R	tigk lass	50	[kN]	11	15	27	43	62	81	99
Stahl galvanisch Stahl R Stahl R Stahl R Stahl HCR Stahl R Stahl HCR Stahl R Stahl Ger Stahl HCR Stahl R Stahl Ger Stahl Ger Stahl HCR Stahl Ger Stahl HCR Stahl Ger Stahl	5 ₹ >		es F							87	113	138
Stahl galvanisch verzinkt Stahl galvanisch verzinkt S										99	129	158
Hand State of St	fischer A	Ankerstangen und Stan	dard	Gew	/inde		Leistung	skategor				
bestandiger Stani HCR = 80	٥		۸,									_4)
bestandiger Stani HCR = 80	akt. c2	verzinkt	se it	8.8								_4)
bestandiger Stani HCR = 80	hara lers		tigk lass	50	[kN]							_4)
bestandiger Stani HCR = 80	\(\overline{\chi} \) \(\overline{\chi} \)		Fes A									_4)
IFaktor für den Ringspalt α_{res} α_{res} α_{res} α_{res} 0.5 (1.0) ³⁾				80		_4)	22	l .			_4)	_4)
Taktor far den Tkingspark	Faktor fü	r den Ringspalt	α_{gap}		[-]				0,5 (1,0) ³)		

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C12.1; für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil. Die fischer Verfüllscheibe ist zu verwenden nach Anhang A 1

⁴⁾ Keine Leistung bewertet

Tabelle C12.1: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Anker- / Gewindestange	Anker- / Gewindestange							M24	M27	M30
Zugtragfähigkeit, Stahlversa	igen¹)									
Stahl galvanisch		5.8					1,50			
in the state of th	eits-	8.8					1,50			
Nichtrostender Stahl R	Festigkeits klasse	50	[-]				2,86			
्र हूं und Hochkorrosions-	Fest K	70				1	,50 ²⁾ / 1,8	7		
beständiger Stahl HCR		80		1,60						
Quertragfähigkeit, Stahlvers	agen ¹⁾									
Stahl galvanisch		5.8					1,25			
verzinkt	e e	8.8		1,25						
Nichtrostender Stahl R	Festigkeits- klasse	50	[-]				2,38			
্বি আnd Hochkorrosions-	Fes.	70		1,25 ²⁾ / 1,56						
beständiger Stahl HCR		80					1,33			

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V

Leistungen

Teilsicherheitsbeiwerte von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

Tabelle C13.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch

Anker- /	Gew	indestange			M10	M12	M16	M20	M24	M27	M30
Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch											
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)											
Tempe-		50 °C / 80 °C	_	[N/mm ²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
ratur bereich	H:	72 °C / 120 °C	τ _{Rk,C1}		4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer	bohr	en mit Standard	- oder l	Hohlbohre	er (wasse	ergefüllte	s Bohrlo	ch) ¹⁾			
Tempe-	l:	50 °C / 80 °C	_	[N]/mm2]	_2)	5,0	5,0	4,5	4,0	3,5	3,5
ratur- bereich	H:	72 °C / 120 °C	₹Rk,C1	[N/mm ²]	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Montage	beiw	vert .									
Trockene	r ode	er nasser Beton						1,0			
Wassergefülltes Bohrloch			γinst	[-]	_ 2)			1,:	2 ¹⁾		

¹⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

fischer Injektionssystem FIS V

Leistungen
Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindestangen

²⁾ Keine Leistung bewertet

Tabelle C14.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C2 im hammergebohrten Bohrloch

		_										
Anker- / Gewindestange		M12	M16	M20								
Charakteristische Verbundtrag	gfähigkeit, kon	nbiniertes Versagen d	urch Herausziehen u	nd Betonausbruch								
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)												
Tempe- I: 50 °C / 80 °C	τ _{Bk C2} [N/mm²	1,5	1,3	2,1								
bereich II: 72 °C / 120 °C	τ _{Rk,C2} [IN/mm²	1,3	1,2	1,9								
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch ³⁾)												
Tempe- I: 50 °C / 80 °C	τ _{Bk C2} [N/mm²	1,3	1,1	1,8								
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,C2} [IN/mm²	1,1	1,0	1,6								
Montagebeiwert												
Trockener oder nasser Beton	[1		1,0									
Wassergefülltes Bohrloch	γinst [-]	_4)	1,2	2 3)								
Verschiebungen unter Zuglast	1)											
δN,C2 (DLS)-Faktor	[mm//N1/mm²)	0,20	0,13	0,21								
δ _{N,C2} (ULS)-Faktor	[mm/(N/mm²)	0,38	0,18	0,24								
Verschiebungen unter Querlas	st ²⁾											
δv,C2 (DLS)-Faktor	[mm/kN]	0,18	0,10	0,07								
δ V,C2 (ULS)-Faktor	[IIIII/KIN]	0,25	0,14	0,11								

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N,C2 (DLS)}} &= \delta_{\text{N,C2 (DLS)-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N,C2(ULS)}} &= \delta_{\text{N,C2 (ULS)-Faktor}} \cdot \tau_{\text{Ed}} \\ (\tau_{\text{Ed}} : Bemessungswert der \\ einwirkenden Zugspannung) \end{split}$$

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Faktor}} \cdot V_{\text{Ed}} \\ &\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Faktor}} \cdot V_{\text{Ed}} \\ &(V_{\text{Ed}}\text{: Bemessungswert der} \\ &\text{einwirkenden Querkraft)} \end{split}$$

fischer Injektionssystem FIS V

Leistungen

Charakteristische Werte unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen

³⁾ Nur für Koaxialkartuschen: 380 ml, 400 ml, 410 ml

⁴⁾ Keine Leistung bewertet