

DF

LEISTUNGSERKLÄRUNG

für fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR (Mechanischer Dübel für den Einsatz in Beton)

1. Eindeutiger Kenncode des Produkttyps: DoP 0186

Nachträgliche Befestigung in gerissenem oder ungerissenem Beton. 2. Verwendungszweck(e):

Siehe Anhang, insbesondere die Anhänge B1- B6

fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Deutschland 3. Hersteller:

4. Bevollmächtigter:

5. AVCP - System/e:

6. Europäisches Bewertungsdokument: EAD 330232-00-0601 Europäische Technische Bewertung: ETA-05/0069; 2020-04-24

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt Notifizierte Stelle(n):

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung Widerstand für Stahlversagen: Anhang C1 E_S= 210 000 MPa (statische und quasi-statische Belastung): Widerstand für Herausziehen: Anhang C1

> Widerstand für kegelförmigen Betonausbruch: Anhang C1 Robustheit: Anhang C1

Anhänge B3, B4 Minimaler Rand- und Achsabstand: Anhang C1

Randabstand zur Vermeidung von Spaltversagen bei Belastung:

Verschiebungen bei statischer und quasi-

Anhang C5 statischer Belastung:

Charakteristischer Widerstand bei Querbelastung Widerstand für Stahlversagen (Querbelastung): Anhang C2 (statische und quasi-statische Belastung): Widerstand für Pry-out Versagen: Anhang C2

Widerstand Betonkantenbruch: Anhang C2 Verschiebungen bei statischer und quasi-Anhang C5

statischer Belastung:

Dauerhaftigkeit: Anhänge A4, B1

Charakteristische Widerstände und Verschiebungen Widerstand Stahlversagen: Anhana C4 für die seismischen Leistungskategorien C1 und C2:

Widerstand für Herausziehen: Anhang C4

> Bruchdehnung: >8%

Faktor Ringspalt: Anhang C4

Verschiebungen: Anhang C5

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Feuerwiderstand: Feuerwiderstand, Stahlversagen (Zugbelastung): Anhang C3 Feuerwiderstand, Herausziehen (Zugbelastung): Anhang C3 Feuerwiderstand, Stahlversagen (Querbelastung): Anhang C3

Fischer DATA DOP_ECs_V20.xlsm 1/2

8. <u>Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:</u>

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Thilo Pregartner, Dr.-Ing.

ppa. The Mx

Peter Schillinger, Dipl.-Ing.

i.V. P. Sot

Tumlingen, 2020-05-15

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V20.xlsm 2/ 2

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Bolzenanker FAZ II ist ein Dübel aus galvanisch verzinktem Stahl (FAZ II) oder aus nichtrostendem Stahl (FAZ II R) oder aus hochkorrosionsbeständigem Stahl (FAZ II HCR), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

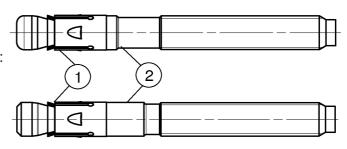
Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

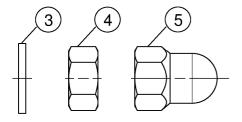
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 4
Dauerhaftigkeit	Siehe Anhang B 1

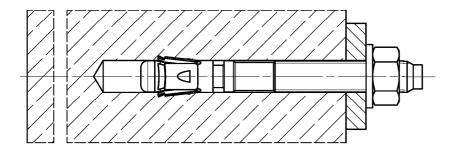
3.2 Brandschutz (BWR 2)

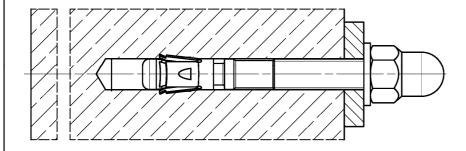

Wesentliches Merkmal	Leistung				
Brandverhalten	Klasse A1				
Feuerwiderstand	Siehe Anhang C 3				

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

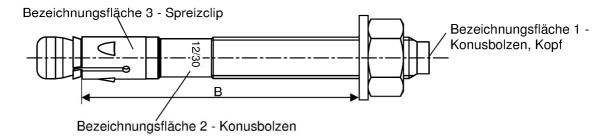

Konusbolzen, kaltumgeformte Ausführung:



Konusbolzen, spanend hergestellt:

- ① Spreizclip
- ② Konusbolzen (kaltmassivumgeformt oder gedreht)
- 3 Unterlegscheibe
- Sechskantmutter
- 5 fischer FAZ II Hutmutter

(Abbildungen nicht maßstäblich)


fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Produktbeschreibung Einbauzustand

Anhang A 1

Appendix 2/16

Produktkennzeichnung und Buchstabenkürzel:

Produktkennzeichnung, Beispiel: FAZ II 12/30 R

Firmenkennung | Dübeltyp auf Bezeichnungsfläche 2 oder 3

Gewindegröße / max. Dicke des Anbauteils (t_{fix})
Kennzeichnung R oder HCR auf Bezeichnungsfläche 2

FAZ II: Kohlenstoffstahl, galvanisch verzinkt

FAZ II R: nichtrostender Stahl

FAZ II HCR: hochkorrosionsbeständiger Stahl

Tabelle A2.1: Buchstabenkürzel auf Bezeichnungsfläche 1:

Markierui	ng	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix}		5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M6		-	-		45	50	55	60	65	70	75	80	85	90
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20					105	110	115	120	125	130	135	140	145	150
	M24			-		130	135	140	145	150	155	160	165	170	175
Markierui	ng	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
1	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485

Berechung vorhandener hef von eingebauten Ankern:

220

245

240

265

260

285

280

305

300

325

350

375

vorhandene h_{ef} = B_(gemäß Tabelle A2.1) - vorhandenes t_{fix}

Dicke des Anbauteils t_{fix} ist inklusive der Dicke der Befestigungsplatte t und z.B. der Dicke von Ausgleichsschichten t_{Mörtel} oder anderen nicht tragenden Schichten

(Abbildungen nicht maßstäblich)

400

425

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

170

195

180

205

190

215

200

225

160

185

Produktbeschreibung

M20

M24

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

450

475

500

525

Appendix 3/16

Produktabmessungen

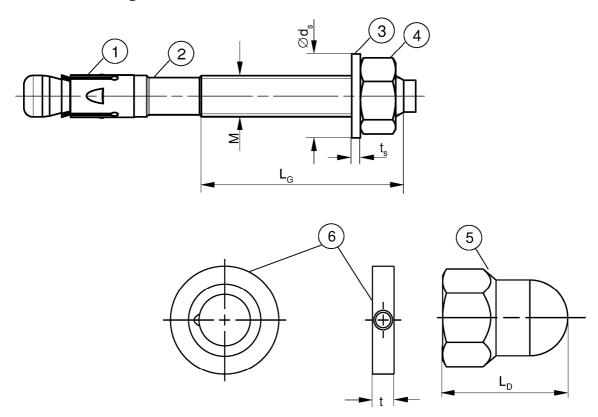


Tabelle A3.1: Abmessungen [mm]

Toil	Teil Bezeichnung				FAZ II, FAZ II R, FAZ II HCR									
Tell	Tell Bezeichhang			М6	М8	M10	M12	M16	M20	M24				
1	Spreizclip	Blechdicke		Blechdicke		0,8	1,3	1,4	1,6	2,	4	3,0		
2	Konusbolzen	Gewindegröße M		6	8	10	12	16	20	24				
	Konusboizen	L _G		10	19	26	31	40	50	57				
3	Unterlegscheibe	ts	≥	1	,4	1,8	2,3	2,	7	3,7				
	Ontenegscheibe	$\emptyset d_s$		11	15	19	23	29	36	43				
4 & 5	Sechskantmutter / fischer FAZ II	Schlü	ısselweite	10	13	17	19	24	30	36				
5	Hutmutter	L _D	≥		-	22	27	33		-				
6	fischer Verfüllscheibe FFD	t	=			6		7	8	10				

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Produktbeschreibung

Abmessungen

Anhang A 3

Appendix 4/ 16

Tabelle A4.1: Materialien FAZ II (ISO 4042:2018/Zn5/An(A2K))

Teil	Bezeichnung	Material
1	Spreizclip	Kaltband, EN 10139:2016 oder Edelstahl EN 10088:2014
2	Konusbolzen	Kaltstauchstahl oder Automatenstahl
3	Unterlegscheibe	Kaltband, EN 10139:2016
4	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012

Tabelle A4.2: Materialien FAZ II R

Teil	Bezeichnung	Material
1	Spreizclip	
2	Konusbolzen	Edelstahl EN 10088:2014
3	Unterlegscheibe	
4	Sechskantmutter	Edelstahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70

Tabelle A4.3: Materialien FAZ II HCR

Teil	Bezeichnung	Material
1	Spreizclip	Edelstahl EN 10088:2014
2	Konusbolzen	Haabkarraajanahaatändigar Stahl EN 10099:2014
3	Unterlegscheibe	Hochkorrosionsbeständiger Stahl EN 10088:2014
4	Sechskantmutter	Hochkorrosionsbeständiger Stahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Produktbeschreibung Materialien Anhang A 4

Appendix 5/ 16

Spezifikation des Verwendungszweck

Beanspruchung der Verankerung:

Größe			FAZ II, FAZ II R, FAZ II HCR									
Grobe	М6	M8	M10	M12	M16	M20	M24					
Statische und quasi-statische Belastung												
Gerissener und ungerissener Beton				/								
Brandbeanspruchung			200									
Seismische Einwirkung für	-				/							
Leistungskategorie C21)			-			/		-				

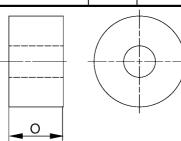
¹⁾ FAZ II HCR: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß (gerissen und ungerissen) gemäß EN 206-1:2013+A1:2016
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (FAZ II, FAZ II R, FAZ II HCR)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (FAZ II R, FAZ II HCR)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (FAZ II HCR)
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der
 Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer
 Verschmutzung (z.B. in Rauchgas Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet
 werden)


Bemessung:

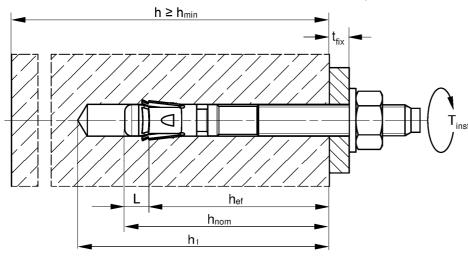

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden pr
 üfbare Berechnungen und
 Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der D
 übel anzugeben
 (z. B. Lage des D
 übels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und EOTA Technischer Report TR 055
- Anwendungen mit einer effektiven Verankerungstiefe hef < 40 mm sind auf statisch unbestimmte Bauteile beschränkt (z.B. leichte abgehängte Decken in trockenen Innenräumen) und über die ETA abgedeckt

Tabelle B2.1: Montagekennwerte

 Größe				F#	AZ II, FA	ZIIR, F	AZ II HO	CR		
Grobe	arobo					M12	M16	M20	M24	
Nomineller Bohrdurchmesser	d ₀ =		6	8	10	12	16	20	24	
Maximaler Schneidendurchmesser mit Hammerbohrer oder Hohlbohrer		[mm]	6,40	8,45	10.45	12,5	16,5	20,55	24,55	
Maximaler Schneidendurchmesser mit Diamantbohrer	d _{cut,max}		ı	8,15	10,45	12,25	16,45	20,50	24,40	
Gesamtlänge des Ankers im Beton	$h_{nom} \ge (L)$	[mm]	46,5 (6,5)	44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)	148,5 (23,5)	
			Vorhandenes h _{ef} + L = h _{nom}							
Bohrlochtiefe am tiefsten Punkt	$h_1 \geq$				h _{nom} + 5			h _{nom}	+ 10	
Durchmesser des Durchgangslochs im Anbauteil	$d_{f}\leq$	[mm]	7	9	12	14	18	22	26	
Montagedrehmoment	T _{inst} =	[Nm]	8	20	45	60	110	200	270	
Überstand nachdem der Konusbolzen durchgeschlagen wurde (für Anwendung mit fischer Hutmutter gemäß Anhang B6)	O =	[mm]		-	12	16	20		-	

Setzlehre FAZ II SL-H für Anker mit fischer FAZ II Hutmutter:

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt

n = Dicke des Betonbauteils

 $h_{min} = Minimale Dicke des Betonbauteils$ $<math>h_{nom} = Gesamtlänge des Ankers im Beton$

 $T_{inst} = Montagedrehmoment$

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Verwendungszweck Montageparameter Anhang B 2

Appendix 7/16

Tahalla	B3 1-	Mindaetdicka	der Retenhauteile	minimala Ache-	und Randabstände
i i abelle	D3.13	: wiinaestaicke	der belonbaulelle.	. minimale Achs-	· uno Randabsiande

Größe					FAZ II, F	AZ II R, I	FAZ II HC	R			
Grobe			М6	M8	M10	M12	M16	M20	M24		
Minimaler Randabstand											
Ungerissener Beton	— Cmin		45	40	45	55	65	95	135		
Gerissener Beton	_ 0111111		10	10	10	33		85	100		
Zugehöriger Achsabstand	s	[mm]			ger	näß Anha	ing B4				
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200		
Dicke des Betonbauteils	cke des Betonbauteils h≥			max. $\{h_{min}; h_1^{(1)} + 30\}$ max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_o\}$							
Minimaler Achsabstand											
Ungerissener Beton	C		35	40	40	50	65	95	100		
Gerissener Beton	— Smin		33	35	40	30	05	95	100		
Zugehöriger Randabstand	С	[mm]	gemäß Anhang B4								
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200		
Dicke des Betonbauteils	h≥			max. {h _{mi}	n; h ₁ 1) + 3	0}	max. {	h _{min} ; h ₁ 1) +	- 2 · d₀}		
Minimale Spaltfläche											
Ungerissener Beton	_ ^	[·1000	5,1	18	37	54	67	100	117,5		
Gerissener Beton	─ A _{sp,req}	mm²]	1,5	12	27	40	50	77	87,5		

¹⁾ h₁ gemäß Anhang B2

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

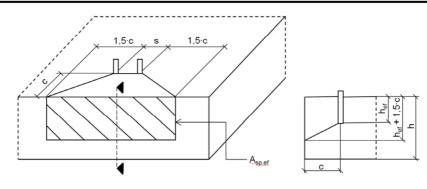
Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

 $A_{sp,req} < A_{sp,ef}$

A_{sp,req} = erforderliche Spaltfläche

A_{sp,ef} = effektive Spaltfläche (gemäß Anhang B4)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR


Verwendungszweck

Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Anhang B 3

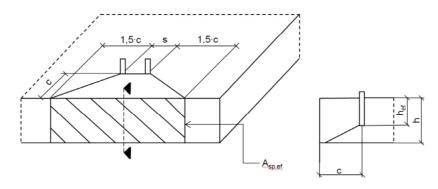

Appendix 8/16

Tabelle B4.1: Effektive Spaltfläche $A_{sp,ef}$ bei einer Betonbauteildicke $h > h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker und Ankergruppen mit	s > 3 · c	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1.5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Tabelle B4.2: Effektive Spaltfläche $A_{sp,ef}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Einzelanker und Ankergruppen mit	s > 3 · c	$A_{sp,ef} = 6 \cdot c \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Randabstände und Achsabstände sind auf 5 mm zu runden

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR	
Verwendungszweck Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Anhang B 4 Appendix 9/ 16

Montageanleitung:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile Ausnahme: fischer FAZ II Hutmutter
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- Hammer-, Hohl- oder Diamantbohren gemäß Anhang B5
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt
- Es ist darauf zu achten, dass im Falle eines Brandes keine lokalen Abplatzungen der Betondecke erfolgten
- · Unter Erbebeneinfluß sind Abstandmontagen und Befestigungen durch nicht tragenden Schichten nicht erlaubt
- Bei Anwendungen unter Erdbebeneinfluss muss das Befestigungselement außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonstruktur angeordnet sein

Montageanleitung: Bohren und Bohrlochreinigung

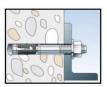
Möglichkeiten von Bohren und Reinigung Hammerbohrer 1: Bohrloch erstellen 2: Bohrloch reinigen Hohlbohrer 1: Bohrloch erstellen mit Hohlbohrer und Staubsauger Diamantbohrer. nur bei Einwirkungen ohne Erdbebenbeanspruchung 1: Bohrloch erstellen 2: Bohrloch reinigen und ≥ Bohr Ø 8

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Verwendungszweck Montageanleitung Anhang B 5

Appendix 10/16

Montageanleitung: Anker setzen


Sechskantmutter:

3: Anker setzen

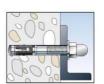
4: Anker mit dem Montagedrehmoment T_{inst} verspreizen

5: Abgeschlossene Montage

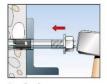
fischer FAZ II HUTMUTTER:

Möglichkeit 1: Durchsteckmontage mit Setzlehre SL-H:

3: Anker mit Setzlehre setzen

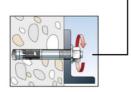

4: Überstand prüfen

5: fischer FAZ II Hutmutter aufdrehen



6: Anker mit dem Montagedrehmoment T_{inst} verspreizen

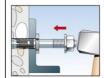
7: Abgeschlossene Montage


Möglichkeit 2: Durchsteckmontage mit Sechskantmutter:

3: Anker setzen

4: Position prüfen: Ein Gewindegang Überstand über die Mutter

4.1: Mutter entfernen


fischer VERFÜLLSCHEIBE FFD optional z.B. bei Anwendungen unter Erdbebenbeanspruchung C2 oder zur Minimierung des Lochspiels:

Der Ringspalt zwischen Bolzen und Anbauteil darf mit Mörtel verfüllt sein (Druckfestigkeit ≥ 50 N/mm² z.B. FIS SB) nach Schritt 7 (zur Minimierung des Lochspiels).

Optional

Die Verfüllscheibe Ist zusätzlich zur Standard-Unterlegscheibe einzusetzen.

Die Dicke der Verfüllscheibe muss bei t_{fix} berücksichtigt werden. Senkung in der Verfüllscheibe zeigt in Richtung Anbauteil.

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Verwendungszweck Montageanleitung Anhang B 6
Appendix 11/ 16

Tabelle C1.1: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi statischer Belastung

0 ::0		FAZ II, FAZ II R, FAZ II HCR								
Größe			М6	M8	3	M10	M12	M16	M20	M24
Stahlversagen										
Charakteristischer FAZ II	$N_{Rk,s}$	[kN]	7,6	16,6		28,3	43,2	67,0	123,3	176,7
Widerstand FAZ II R/HCR	INRK,s	[[[]]	11,4	17,	0	29,0	44,3	70,6	124,9	183,6
Teilsicherheitsbeiwert	$\gamma_{Ms}{}^{1)}$	[-]		1,5						
Herausziehen										
Effektive Verankerungstiefe für Berechnung	h _{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125
Charakteristischer Widerstand in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	1,5	5,5	8	13	20	27,0	34,4	48,1
Charakteristischer Widerstand in ungerissenem Beton C20/25	тчнк,р		10,5	14		20	22	38,6	49,2	68,8
	_	C25/30	·							
Erhöhungsfaktoren für N _{Rk,p} für	_	C30/37					1,22			
gerissenen und ungerissenen	Ψc -	C35/45					1,32			
Beton	Ψ° -	C40/50					1,41			
	-	C45/55					1,50			
		C50/60	1,58							
Montagesicherheitsbeiwert	γinst	[-]	1,0							
Betonbruch und Spaltversagen	1.						11 02)			
Faktor für ungerissenem Beton	Kucr,N	[-]					11,02)			
Faktor für gerissenem Beton Charakteristischer Achsabstand	k _{cr,N}						7,7 ²⁾ 3 · h _{ef}			
Charakteristischer Randabstand	Scr,N Ccr,N	[mm]					1,5 · h _{ef}			
Achsabstand							2 · C _{cr,sp}			
Randabstand bei h = 80	S _{cr,sp}			2,4·ł	<u> </u>	2·h _{ef}	Z Ccr,sp			
Randabstand bei h = 100				۷,4۱	ret	2,4·h _{ef}	2·h _{ef}		_	
Randabstand bei h = 120		[mm]				2 , 7 Her	2,1·h _{ef}		_	
Randabstand bei h = 140	Ccr,sp	[]	40	2·h	o f		2 , 1 11ei			_
Randabstand bei h = 160				_ 110	J1	1,9·h _{ef}	1,5·h _{ef}	2·h _{ef}		
Randabstand bei h = 200							.,5		2,4·h _{ef}	2,2·h _{ef}
Charakteristischer Widerstand gegen Spalten	N ⁰ Rk,sp	[kN]		min {N ⁰ _{Rk,c} ; N _{Rk,p} } ³⁾						

¹⁾ Sofern andere nationale Regelungen fehlen

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR Leistungen Appendix 12/ 16 Charakteristische Zugtragfähigkeit

Anhang C 1

²⁾ Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ N⁰Rk,c nach EN 1992-4:2018

Tabelle C2.1: Charakteristische Werte der **Quertragfähigkeit** unter statischer und quasi - statischer Belastung

Crapa				FA	Z II, FA	Z II R, F	AZ II H	ICR	
Größe			М6	M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm									
Charakteristischer Widerstand FAZ II	V^0 Rk,s	[kN]	5,9	13,6	21,4	30,6	55,0	81,4	110,1
FAZ II R/HCR	V Rk,s	נאואן	8,8	16,8	26,5	38,3	69,8	106,3	148,5
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]				1,25			
Faktor für Duktilität	k ₇	[-]				1,0			
Stahlversagen mit Hebelarm und Pryoutversag	en								
Effektive Verankerungstiefe für Berechnung	h _{ef}	[mm]	40	45	60	70	85	100	125
Charaktariatiaahaa Diagamamant FAZ II	NAO.	[Nm]	11,4	26	52	92	233	513	865
Charakteristisches Biegemoment FAZ II R/HCR	IVI [∨] Rk,s		10,7	29	59	100	256	519	898
Faktor für Pryoutversagen	k ₈	[-]	2,6	2,8	3,2		3,0	2,6	2,4
Effektive Verankerungstiefe für	h	[mm]		35 -	40 -	50 -	65 -		
Berechnung	1101	[]		< 45	< 60	< 70	< 85		
Charakteristisches Biegemoment FAZ II	M^0 Rk,s	[Nm]	-	20	44	92	184		-
FAZ II R/HCR	IVI IIK,S	[]		21	45	100	193		
Faktor für Pryoutversagen	k ₈	[-]		2,5	2,6	3,1	3,2		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]				1,25			
Faktor für Duktilität	k ₇	[-]				1,0			
Betonkantenbruch									
Effektive Verankerungstiefe für Berechnung	l _f =	[mm]				h _{ef}			
Dübeldurchmesser	d _{nom}	-	6	8	10	12	16	20	24

¹⁾ Sofern andere nationale Regelungen fehlen

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Leistungen

Charakteristische Quertragfähigkeit

Anhang C 2
Appendix 13/ 16

Tabelle C3.1: Charakteristische Werte der Zu	ugtragfähigkeit unter Brandbeanspruchung
--	--

0				FAZ II, FAZ II R, FAZ II HCR							
Größe				М6	M8	M10	M12	M16	M20	M24	
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125	
Ola a mallut a mi ati a ala a m		R30		$0,6^{1)} / 0,9^{2)}$	1,4	2,8	5,0	9,4	14,7	21,1	
Charakteristischer Widerstand	NI .	R60		$0,4^{1)} / 0,9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3	
Stahlversagen	$N_{Rk,s,fi}$	R90		$0,3^{1)} / 0,9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5	
Staniversagen		R120		$0,2^{1)} / 0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6	
Charakteristischer Widerstand	N _{Rk,c,fi}	R30 - R90	[kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000							
Betonbruch	, , ,	R120			7,7 · h _e	f ^{1,5} · (20) ^{0,}	⁵ · h _{ef} / 20	0 / 1000 · 0	,8		
Charakteristischer Widerstand Herausziehen	N _{Rk,p,fi}	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,0	
nerauszienen	_	R120		0.3	0.3 / 1.6	1.7 / 2.6	2.4 / 4.0	3.6 / 5.4	6.9	9.6	

Tabelle C3.2: Charakteristische Werte der Quertragfähigkeit unter Brandbeanspruchung

C	röße		R	30	R60			
FAZ II, FAZ	II R, FAZ	Z II HCR	$V_{Rk,s,fi,30}$ [kN] $M^0_{Rk,s,fi,30}$ [Nm]		$V_{Rk,s,fi,60}$ [kN]	M ⁰ _{Rk,s,fi,60} [Nm]		
M6		40	$0,6^{1)} / 0,9^{2)}$	$0,5^{1)}/0,2^{2)}$	$0,4^{1)}/0,9^{2)}$	$0,3^{1)}/0,1^{2)}$		
M8		35	1,8	1,4	1,6	1,2		
M10		40	3	3,6	2,9	3,0		
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4		
M16		65	11,7	19,9	9,1	16,3		
M20		100	18,2	39,0	14,2	31,8		
M24		125	26,3	67,3	20,5	55,0		

G	Größe		R	90	R120			
FAZ II, FAZ	II R, FAZ	Z II HCR	$V_{Rk,s,fi,90}$ [kN]	M ⁰ Rk,s,fi,90 [Nm]	$V_{Rk,s,fi,120}$ [kN]	M ⁰ Rk,s,fi,120 [Nm]		
M6		40	$0,3^{1)}/0,9^{2)}$	$0,2^{1)}/0,1^{2)}$	$0,2^{1)}/0,7^{2)}$	$0,2^{1)}/0,1^{2)}$		
M8		35	1,3	1,0	1,2	0,8		
M10		40	2,2	2,4	1,9	2,1		
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3		
M16		65	6,6	12,6	5,3	11,0		
M20		100	10,3	24,6	8,3	21,4		
M24		125	14,8	42,6	11,9	37,0		

Pryoutversagen gemäß EN 1992-4:2018

Tabelle C3.3: Minimale Achsabstände und minimale Randabstände für Anker unter **Brandbeanspruchung** für **Zug-** und **Quertragfähigkeit**

Cräßo	Größe			FAZ II, FAZ II R, FAZ II HCR							
Grobe				М8	M10	M12	M16	M20	M24		
Achsabstand	Smin		Anhang B3								
Randabstand	Cmin	[mm]		c _{min} = 2 · h _{ef} , bei mehrseitiger Brandbeanspruchung c _{min} ≥ 300 mm							

1) FAZ II

²⁾ FAZ II R / HCR

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

Appendix 14/ 16

Tabelle C4.1: Charakteristische Werte der Zug- und Quertragfähigk	eit unter
Erdbebenbeanspruchung C1	

0				F	AZ II, FA	ZIIR, F	AZ II HC	R	
Größe			М6	M8	M10	M12	M16	M20	M24
Dübellänge	L _{max}			167	186	221	285	394	477
Effektive Verankerungstiefe	h _{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125
Mit Ringspaltverfüllung α_{gap} [-] 1,0									
Stahlversagen									
Charakteristische Zugtragfähigkeit C1	$N_{\text{Rk,s,C1}}$	[kN]		16,0	27,0	41,0	66,0	111,0	150,0
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	-	1,5					
Herausziehen									
Charakteristische Zugtragfähigkeit in gerissenem Beton C 1	$N_{Rk,p,C1}$	[kN]	1	4,6	8,0	16,0	28,2	36,0	50,3
Montagesicherheitsbeiwert	γinst	[-]		1,0					
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit C1	$V_{Rk,s,C1}$	[kN]		11	17	27	47	56	69
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	1,25						

¹⁾ Sofern andere nationale Regelungen fehlen

Table C4.2: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C2

0.4500			FAZ II, FAZ II R, FAZ II HCR ¹⁾								
Größe			М6	M8	M10	M12	M16	M20	M24		
Dübellänge	L_{max}	[mm]			186	221	285	394	-		
Mit Ringspaltverfüllung	$lpha_{ t gap}$	[-]				1,0					
Stahlversagen											
Charakteristische Zugtragfähigkeit C2	$N_{\text{Rk,s,C2}}$	[kN]			27	41	66	111			
Teilsicherheitsbeiwert	γMs,C2 ²⁾	[-]					-				
Herausziehen											
Charakteristische Zugtragfähigkeit in gerissenem Beton C2	h _{ef}	[mm]			60	70	85	100			
	$N_{Rk,p,C2}$	[kN]			5,1	7,4	21,5	30,7	-		
	h _{ef}	[mm]		•	40-59	50-69	65-84				
	$N_{Rk,p,C2}$	[kN]			2,7	4,4	16,4	•	•		
Montagesicherheitsbeiwert	γinst	[-]				1,0					
Stahlversagen ohne Hebelarm											
	h _{ef}	[mm]			60	70	85	100			
Charaktariatiaaha Quartraafähiakait C2	$V_{\rm Rk,s,C2}$	[kN]			10,0	17,4	27,5	39,9	-		
Charakteristische Quertragfähigkeit C2	h _{ef}	[mm]	•	•	40-59	50-69	65-84				
	$V_{Rk,s,C2}$	[kN]			7,0	12,7	22,0	•	•		
Teilsicherheitsbeiwert	γMs,C2 ²⁾	[-]				1,25					
1) FAZ II HCR: Gilt nur für kaltmassivumg	eformte Au	sführui	ng (gema	äß Anha	ng A1)						

FAZ II HON. Gill flur full kallinassivumgerorinte Austurirung (gernab Annang AT)

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Leistungen

Charakteristische Werte von Zug und Querwiderständen unter Erdbebeneinfluss

Anhang C 4
Appendix 15/ 16

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C5.1: Verschiebungen unter statischer und quasi - statischer Zuglast

Größe			FAZ II, FAZ II R, FAZ II HCR									
			М6	M8	M10	M12	M16	M20	M24			
Verschiebungen -	- Faktor für Zuglast¹)											
δ _{N0} - Faktor	In gariaganam Patan		0,13	0,22	0,12	0,09	0,08	0,07	0,05			
δ _{N∞} - Faktor	In gerissenem Beton	/kN] -	1,00	0,78	0,40	0,19	0,	09	0,07			
δ _{N0} - Faktor	•	/KINJ [0,16	0,07	0,05	0,	06	0,05	0,04			
δ _{N∞} - Faktor	In ungerissenem Beton		0,24	0,29	0,21	0,14	0,10	0,06	0,05			

Tabelle C5.2: Verschiebungen unter statischer und quasi - statischer Querlast

Größe			FAZ II								
arobe				М8	M10	M12	M16	M20	M24		
Verschiebungen -	Faktor für Querlast ²⁾				-	-	_	_			
δvo - Faktor	In gerissenem und ungerissenem Beton		0,6	0,35	0,37	0,27	0,10	0,09	0,07		
δv∞ - Faktor			0,9	0,52	0,55	0,55 0,40	0,14	0,15	0,11		
		[mm/kN]			FAZ II	R, FAZ	II HCR				
δvo - Faktor			0,6	0,23	0,19	0,18	0,10	0,11	0,07		
δv∞ - Faktor			0,9	0,27	0,22	0,16	0,11	0,05	0,09		

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \mathsf{Faktor} \, \cdot \, N_{\text{ED}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty} - \mathsf{Faktor} \, \cdot \, N_{\text{ED}}$

(N_{ED}: Bemessungswert der vorhandenen Zuglast)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\,\text{--Faktor}} \cdot V_{\text{ED}}$

 $\delta_{V\infty} = \delta_{V\infty\,-\,\text{Faktor}} \cdot \,V_{\text{ED}}$

(V_{ED}: Bemessungswert der vorhandenen Querlast)

Tabelle C5.3: Verschiebungen unter Zuglast C2 für alle Verankerungstiefen

Cräßo			FAZ II, FAZ II R, FAZ II HCR								
Größe		М6	M8	M10	M12	M16	M20	M24			
Verschiebungen DLS	δN,C2(DLS)	[mm]	-		2,7	4	,4	5,6			
Verschiebungen ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]			11,5	13,0	12,3	14,4	-		

Tabelle C5.4: Verschiebungen unter Querlast C2 für alle Verankerungstiefen

Cvälla			FAZ II, FAZ II R, FAZ II HCR								
Größe		М6	М8	M10	M12	M16	M20	M24			
Verschiebungen DLS	δv,c2 (DLS)	[]			4,1	4,7	5,5	4,8			
Verschiebungen ULS	δv,c2 (ULS)	[mm]		-	6,2	7,8	10,1	11,2	ı		

fischer Bolzenanker FAZ II, FAZ II R, FAZ II HCR

Leistungen

Verschiebungen unter Zug und Querlast

Anhang C 5

Appendix 16/16