

LEISTUNGSERKLÄRUNG

DoP 0263

für fischer Schwerlastanker TA M, TA M S, TA M T (Mechanischer Dübel für den Einsatz in Beton)

DF

1. Eindeutiger Kenncode des Produkttyps: DoP 0263

2. Verwendungszweck(e): Nachträgliche Befestigung für die Verwendung in ungerissenem Beton, siehe Anhang, insbesondere

die Anhänge B1 - B3.

3. Hersteller: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Deutschland

4. <u>Bevollmächtigter:</u> –

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330232-00-0601
Europäische Technische Bewertung: ETA-04/0003; 2018-06-12

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1 E_s = 210 000 MPa

Widerstand für Herausziehen: Anhang C1

Widerstand für kegelförmigen Betonausbruch: Anhang C1

Robustheit: Anhang C1

Minimaler Rand- und Achsabstand: Anhang B2

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C1 $N^0_{Rk,sp}$ =NPD

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen (Querzugbelastung): Anhang C2

Widerstand für Pry-out Versagen: Anhang C2
Widerstand für Betonkantenbruch: Anhang C2

Verschiebungen bei statischer und quasi- statischer Belastung: Anhang C2

Dauerhaftigkeit: Anhänge A3, A4, B1

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand für Stahlversagen: NPD Widerstand für Herausziehen: NPD

Bruchdehnung: NPD Faktor Ringspalt: NPD Verschiebungen: NPD

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Feuerwiderstand:

Feuerwiderstand, Stahlversagen (Zugbelastung): NPD Feuerwiderstand, Herausziehen (Zugbelastung): NPD Feuerwiderstand, Stahlversagen (Querzugbelastung): NPD

8. Angemessene Technische Dokumentation und/oder

Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr.-Ing. Oliver Geibig, Geschäftsführer Business Units & Engineering

Tumlingen, 2021-01-12

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V37.xlsm 1/1

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Schwerlastanker TA M, TA M S und TA M T in den Größen M6, M8, M10 und M12 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung mit der Sechskantschraube verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn die Betonschraube entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer der Betonschraube von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

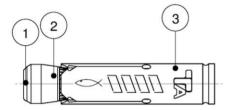
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang C 1
(statische und quasi-statische Einwirkungen)	
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang C 2
(statische und quasi-statische Einwirkungen)	
Verschiebungen	Siehe Anhang C 2
(statische und quasi-statische Einwirkungen)	
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

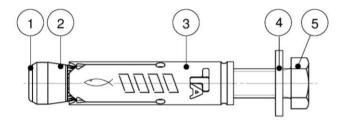
Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

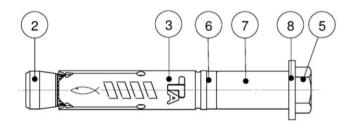

Gemäß den Europäischen Bewertungsdokumenten EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Vorsteckmontage:


TA M

Die Sechskantschraube und die Unterlegscheibe gemäß Tabelle A4.1 und A4.2 müssen vom Verwender zur Verfügung gestellt werden


TAMS

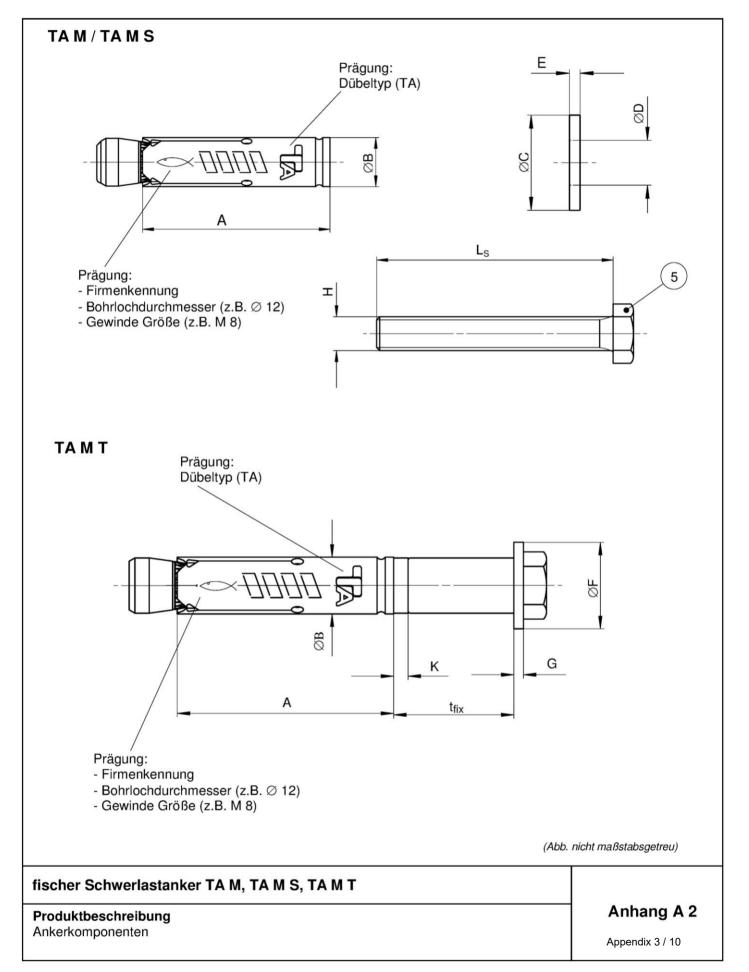
Die Sechskantschraube wird vom Hersteller (fischer) zusammen mit dem Anker geliefert

Vorsteckmontage:

TAMT

- Kunststoffkappe (optional)
- Konusmutter
- Spreizhülse
- Unterlegscheibe (TA M / TA M S) (8)
- Sechskantschraube
- Distanzring
- Distanzhülse
 - Unterlegscheibe (TA M T)

(Abb. nicht maßstabsgetreu)


fischer Schwerlastanker TA M, TA M S, TA M T

Produktbeschreibung

Ankertypen

Anhang A 1

Appendix 2 / 10

Tabelle A3.1: Dübelabmessungen [[mm]
----------------------------------	------

Teil	Bezeichnung	Dübeltyp			М6	M8	M10	M12	
3	Spreizhülse	TA M / TA M S /			40,0	45,0	55,0	70,0	
3	Spreizhuise	TA M T	Ø B		9,6	11,8	14,5	17,5	
4	Lintaria gashaiba 1)	TA M S	Ø C	\geq	11,0	15,0	19,0	23,0	
4 Unterlegscheibe 1)	TA W S	Е	\geq	1,4	1,4	1,8	2,3		
8	O Hataria va ala dia	Lintaria gashaiha TAMT	ТАМТ	ØF	≥	17,0	21,0	25,0	30,0
8 Unterlegscheibe	TA WIT	G	\geq	1,4	1,8	2,3	2,7		
_	0 1 1 2 7 1	5 Sechskantschraube 2) TAMS/TA	TAMS/TAMT	L _s	≥	t _{fix} + 50	t _{fix} + 55	t _{fix} + 70	t _{fix} + 85
5 Sechs	Secriskantschraube	TAM 5/ TAM I	Н		M6	M8	M10	M12	
6	Distanzring	ТАМТ	K	=	3,0	3,0	3,0	3,0	

Tabelle A3.2: Materialien

Teil	Bezeichnung	Dübeltyp	Materialien	Behandlung
1	Kunststoffkappe 1)	TAM/TAMS	Polyamid	-
2	Konusmutter	TAM/TAMS/ TAMT	Stahl, EN 10277:2008	Verzinkt gemäß EN ISO 4042:2017, min 5 μm, zusätzlich funktionelle Beschichtung
3	Spreizhülse	TAM/TAMS/ TAMT	Kaltgewalzter Stahl EN 10139:2016	
4	Unterlegscheibe 2)	TAMS	Stahl, min 140 HV	Verzinkt gemäß EN ISO
8	Unterlegscheibe	TAMT	Starii, Illiii 140 AV	4042:2017, min 5 μm
5	Sechskantschraube 3)	TAMS/TAMT	Stahl, Festigkeitsklasse 8.8	
6	Distanzring	ТАМТ	Polyethylen	-
7	Distanzhülse	ТАМТ	Kaltgewalzter Stahl EN 10139:2016/ Stahl EN 10 277:2008	Verzinkt gemäß EN ISO 4042:2017, min 5 μm

fischer Schwerlastanker TA M, TA M S, TA M T

Produktbeschreibung

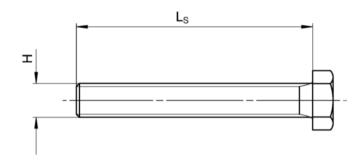
Dübelabmessungen Materialien

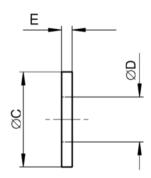
Anhang A 3

Appendix 4 / 10

Für die Spezifikation - Zusammenfassende Spezifikation für die Unterlegscheibe TA M siehe Tabelle A4.2 Für die Spezifikation - zusammenfassende Spezifikation für Sechskantschraube für TA M siehe Tabelle A4.1

²⁾ Für die Spezifikation - Zusammenfassende Spezifikation für die Unterlegscheibe TA M siehe Tabelle A4.2


³⁾ Für die Spezifikation - zusammenfassende Spezifikation für Sechskantschraube für TA M siehe Tabelle A4.1


Tabelle A4.1: Auswahlkriterien für die Sechskantschraube (TA M)

Beschreibung			TA M6	TA M8	TA M10	TA M12	
Länge der Sechskantschraube	Ls	[mm]	≥ t _{fix} + 50	≥ t _{fix} + 55	≥ t _{fix} + 70	≥ t _{fix} + 85	
Gewinde Größe	Н	[-]	M6	M8	M10	M12	
Standardisierung			ISO 4014:2017 / ISO 4017:2014 oder DIN 931:1987 / DIN 933:1987				
Material			Stahl, Festigkeitsklasse 8.8				
Behandlung			Verzinkt gemäß EN ISO 4042:2017, min 5 μm				

Tabelle A4.2: Auswahlkriterien für die Unterlegscheibe (TA M)

Beschreibung				TA M6	TA M8	TA M10	TA M12
Lochdurchmesser	D	min		6,0	8,0	10,0	12,0
Lochaurchmesser		max	-	6,6	8,6	10,8	13,3
Außendurchmesser C [mm]		≥ 11,0	≥ 15,0	≥ 19,0	≥ 23,0		
Dicke	E min max	min		1,4	1,4	1,8	2,3
		max		3,0	3,0	4,0	5,0
Material				Stahl, Härteklasse min. 140 HV			
Behandlung Verzinkt gemäß EN ISO 4042:2017, min 5 μm					in 5 μm		

(Abb. nicht maßstabsgetreu)

Produktbeschreibung

Abmessungen Materialien Anhang A 4

Appendix 5 / 10

Spezifizierung des Verwendungszwecks

fischer Schwerlastanker	TA M6	TA M8	TA M10	TA M12	
Stahl, verzinkt	✓				
Statische und quasi-statische Belastungen			/		
Ungerissener Beton			/		

Verankerungsgrund:

- Normalbeton gemäß EN 206-1:2000
- Festigkeitsklassen C20/25 zu C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

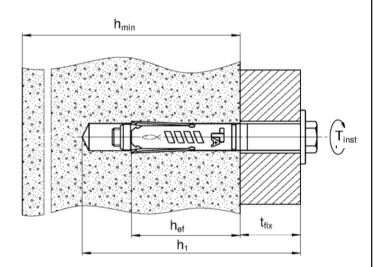
· Bauteile unter den Bedingungen trockener Innenräume

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen nach FprEN 1992-4: 2016 und EOTA Technical Report TR 055

Einbau:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- · Hammerbohren oder hohlbohren gemäß Anhang B3
- Bohrloch +/-5° senkrecht zur Betonoberfläche erstellt, positionieren, ohne die Bewehrung zu beschädigen
- Im Falle einer Fehlbohrung: Anordnung eines neuen Bohrlchs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt


Tabelle B2.1: Montagekennwerte	für TA M / TA M S / TA M	Т
i abone baili momagenem mone		

Ankergröße			TA M6	TA M8	TA M10	TA M12	
Nomineller Bohrdurchmesser	d ₀		10	12	15	18	
Max. Bohrerschneidendurchmesser	d _{cut} ≤	<u></u>	10,45	12,50	15,50	18,50	
Länge der Sechskantschraube	L _S ≥	:	t_{fix} + 50	t _{fix} + 55	t _{fix} + 70	t _{fix} + 85	
Tiefe des Bohrlochs (TA M / TA M S)	h ₁ ≥		L _s - t _{fi}	_× + 15	L _s - t _f	_{ix} + 20	
Tiefe des Bohrlochs (TA M T)	h ₁	-		Ls	+ 10		
Durchmesser des Durchgangslochs im zu befestigenden Anbauteil (TA M / TA M S)	d _f ≤	[mm]	7	9	12	14	
Durchmesser des Durchgangslochs im zu befestigenden Anbauteil (TA M T)	d _f		12	14	18	20	
Dicke des Anbauteils	$t_{\text{fix,min}}$				1		
Dicke des Afibauteils	t _{fix,max}		150	200	250	300	
Montagedrehmoment	T_{inst}	[Nm]	10	20	40	75	

TAM/TAMS:

L_s T_{inst} h_{ef} h₁ h_{min}

TA M T:

L_s = Länge der Sechskantschraube

 h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

h_{min} = Mindestdicke des Betonelements

h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt T_{inst} = Benötigtes Drehmoment beim Verankern

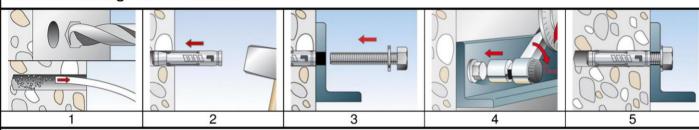
Tabelle B2.2: Mindestdicke des Betonelements, Mindestabstand und minimale Randabstände

Ankergröße			ТА М6	TA M8	TA M10	TA M12
Mindestdicke des Betonelements	h _{min}		100	100	110	140
Minimaler Achsabstand	S _{min}	[mm]	80	90	110	160
Minimaler Randabstand	C _{min}		50	60	70	120

(Abb. nicht maßstabsgetreu)

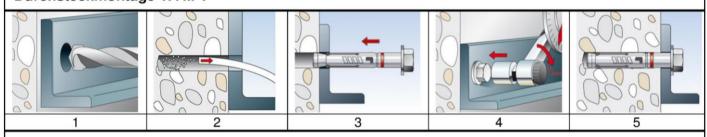
Verwendungszweck

Montageanleitung


Mindestdicke des Betonelements, minimaler Achsabstand und minimaler Randabstand

Anhang B 2

Appendix 7 / 10


Montageanleitung

Vorsteckmontage TA M / TA M S

Nr.	Beschreibung							
4	Bohrloch mit Bohrhammer erstellen,	Bohrloch erstellen mit Hohlbohrer und						
,	Bohrloch reinigen	Staubsauger						
2	Setzen Sie den Dübel							
3	Befestigen Sie das Anbauteil und drehen Sie die Schraube ein							
4	Benötigtes Drehmoment aufbringen T _{inst}							
5	Gesetzter Anker							

Durchsteckmontage TA M T

Nr.	Beschreibung						
1	Bohrloch mit Bohrhammer erstellen	Bohrloch erstellen mit Hohlbohrer und Staubsauger					
2	Bohrloch reinigen	-					
3	Setzen Sie den Dübel						
4	Benötigtes Drehmoment aufbringen T _{inst}						
5	Gesetzter Anker						

	Bohrerarten
Hammerbohrer	***************
Hohlbohrer	

fischer Schwerlastanker TA M, TA M S, TA M T	
Verwendungszweck	

Montageanleitung

Anhang B 3

Appendix 8 / 10

Tabelle C 1.1: Charakteristische Zugtragfähigkeit unter statischen und quasi-statischen Belastungen

Ankergröße			TA M6	TA M8	TA M10	TA M12		
Stahlversagen								
Charakteristischer Widerstand Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4		
Teilsicherhietsbeiwert	γ _{Ms} 1)	[-]			1,5			
Herausziehen								
Charakteristischer Widerstand in ungerissenem Beton	$N_{Rk,p}$	[kN] C20/25	7,5	12	20	25		
		C25/30		1,12				
Erhöhungsfaktoren für N _{Rk.p} für		C30/37		1,22				
	$\Psi_{\mathbf{c}}$	C35/45		1,32				
ungerissenen Beton		C40/50		1,41 1,50				
		C45/55						
		C50/60		1	,58			
Montagebeiwert	γinst	[-]			1,0			
Betonversagen und Spalten								
Effektive Verankerungstiefe	h _{ef}	[mm]	40	45	55	70		
Faktor k ₁	$k_{ucr,N}$	[-]		11	,0 ²⁾			
Abstand (Betonversagen)	$s_{\rm cr,N}$		120	135	220	210		
Randabstand (Betonversagen)	$\mathbf{c}_{cr,N}$	[mm]	60	68	110	105		
Abstand (Spalten)	$S_{cr,sp}$		120	180	330	420		
Randabstand (Spalten)	$C_{cr,sp}$		60	90	165	210		

fischer Schwerlastanker TA M, TA M S, TA M T
Leistungen Charakteristische Zugtragfähigkeit unter statischen und quasi-statischen Belastungen

¹⁾ Sofern andere nationale Regelungen fehlen
2) Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

Tabelle C2.1: Charakteristische Quertragfähigkeit unter statischen und quasi-statischen Belastungen								
Ankergröße			TA M6	TA M8	TA M10	TA M12		
Querlast ohne Hebelarm								
Charakteristischer Widerstand Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	5,8	11,7	19,2	29,8		
Teilicherheitsbeiwert	γ _{Ms} 1)	. []	1,25					
Duktilitätsfaktor	k_7	[-]	1,0					
Querlast mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse 8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105		
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]		1	,25			
Betonausbruch auf der lastabgewandten Seite								

[-]

[mm]

1,1

40

10

Duktilitätsfaktor

Betonkantenbruch

Effektive Dübellänge

Außendurchmesser des

Faktor

Tabelle C2.2: Verschiebungen unter statischen und quasi-statischen Zuglasten

 k_7

 k_8

 d_{nom}

Ankergröße			TA M6	TA M8	TA M10	TA M12
Zuglast in ungerissenem Beton		[kN]	3,0	4,8	7,9	9,9
Verschiebungen	$_{-}$ δ_{N0}	[mm]	0,7	0,7	1,2	1,2
Verschiebungen	$\delta_{N^{\infty}}$	[mm]	1,0	1,0	1,8	1,8

Tabelle C2.3: Verschiebungen unter statischen und quasi statischen Querlasten

Ankergröße			TA M6	TA M8	TA M10	TA M12
Querlast in ungerissenem Beton		[kN]	3,3	6,7	11,0	17,0
Verschiebungen	δ_{V0} .	mm1	2,1	1,9	3,1	3,3
Verschiebungen	$\delta_{V^{\infty}}$	mm]	3,1	2,8	4,6	4,9

fischer Schwerlastanker TA M, TA M S, TA M T

Leistungen

Charakteristische Quertragfähigkeit unter statischen und quasi-statischen Belastungen Verschiebungen unter Zug- und Querbeanspruchung

Anhang C 2

Appendix 10 / 10

1,0

1,8

55

15

2,0

70

18

1,8

45

12

Befestigungselements

1) Sofern andere nationale Regelungen fehlen