

DE

LEISTUNGSERKLÄRUNG

DoP 0293

für fischer Highbond-Anchor FHB II (Verbundspreizdübel zur Verankerung im Beton)

1. Eindeutiger Kenncode des Produkttyps: DoP 0293

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton, siehe Anhang,

insbesondere die Anhänge B1 - B11.

3. Hersteller: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. Bevollmächtigter:

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330499-01-0601
Europäische Technische Bewertung: ETA-21/0948; 2021-12-21

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1

Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch: Anhänge C2-C4

Widerstand für kegelförmigen Betonausbruch: Anhang C2

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C2

Robustheit: Anhänge C2-C4

Montagedrehmoment: Anhänge B3, B4

Minimaler Rand- und Achsabstand: Anhänge B3, B4

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhang C1 Widerstand für Pry-out Versagen: Anhang C2 Widerstand Betonkantenbruch: Anhang C2

Verschiebungen unter kurz- und langzeitiger Belastung:

Verschiebungen unter kurz- und langzeitiger Belastung: Anhänge C5

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand Zugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Zugbelastung, Verschiebungen, Kategorie C2: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C2: NPD

Faktor Ringspalt: NPD

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen: NPD

8. Angemessene Technische Dokumentation und/oder

Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr.-Ing. Oliver Geibig, Geschäftsführer Business Units & Engineering

Tumlingen, 2022-01-03

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V52.xlsm 1/1

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer" ist ein Verbundspreizdübel, der aus einer Kartusche mit Injektionsmörtel fischer FIS HB oder einer fischer Reaktionspatrone FHB II-P(F) und einer Ankerstange FHB II – A S oder FHB II Inject – A S mit Sechskantmutter und Unterlegscheibe besteht.

Die Reaktionspatrone wird in ein Bohrloch im Beton gesetzt. Die speziell geformte Ankerstange wird in die Reaktionspatrone mit einer Maschine durch Schlagen und Drehen getrieben. Für das Injektionssystem wird die Ankerstange in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt. Die Lastübertragung erfolgt durch Formschluss mehrerer Konen im Verbundmörtel und durch eine Kombination aus Verbundspannung und Reibungskräften in den Verankerungsgrund (Beton). Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

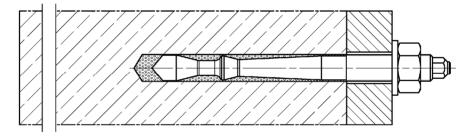
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C4, B3 bis B4
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C2
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

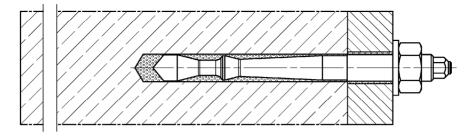
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

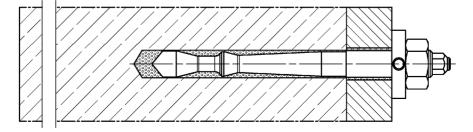
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

Highbond - Anker FHB II - A S


Vorsteckmontage

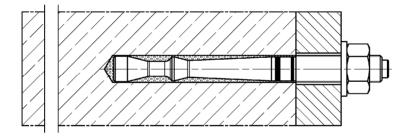
Durchsteckmontage

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

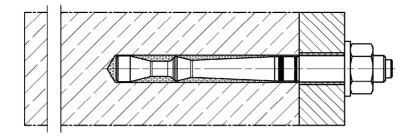
Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

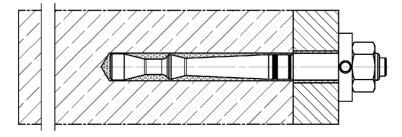
Produktbeschreibung


Einbauzustände Teil 1; FHB II - A S

Anhang A 1
Appendix 3 / 24


Einbauzustände Teil 2

Highbond - Anker FHB II Inject - A S (Anwendung nur mit Injektionsmörtel FIS HB)


Vorsteckmontage

Durchsteckmontage

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Übersicht Systemkomponenten Teil 1 Injektionskartusche (Shuttlekartusche) mit Verschlusskappe: Größen: 360 ml. 825 ml. Aufdruck: fischer FIS HB. Verarbeitungshinweise. Haltbarkeitsdatum. Kolbenwegskala (optional). Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen Injektionskartusche (Coaxialkartusche) mit Verschlusskappe; Größen: 150 ml. 300 ml. 380 ml. 400 ml. 410 ml. **Aufdruck:** fischer FIS HB. Verarbeitungshinweise. Haltbarkeitsdatum. Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen Reaktionspatrone ×FHB II-.. Statikmischer FIS MR Plus für Injektionskartuschen bis 410 ml Statikmischer FIS JMR für Iniektionskartusche 825 ml Verlängerungsschlauch Ø 9 für Statikmischer FIS MR Plus; Verlängerungsschlauch Ø 9 oder Ø 15 für Statikmischer FIS JMR: Injektionsadapter Abbildungen nicht maßstäblich fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang A 3 Produktbeschreibung Appendix 5 / 24 Übersicht Systemkomponenten Teil 1 Kartuschen / Reaktionspatrone / Statikmischer / Zubehör

Übersicht Systemkomponenten Teil 2 fischer Highbond - Anker FHB II und FHB II Inject; vormontierter Zustand Highbond - Anker FHB II - A S Highbond - Anker FHB II Inject - A S alternative Ausführung alternative Ausführung Highbond Ankerstange FHB II - A S Größen: M16, M20, M24 Highbond Ankerstange FHB II Inject - A S Größen: M16, M20, M24 Abbildungen nicht maßstäblich fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang A 4 Produktbeschreibung Appendix 6 / 24 Übersicht Systemkomponenten Teil 2

Ankerstangen

Übersicht Systemkomponenten Teil 3 fischer Verfüllscheibe (verschiedene Ausführungen) radial schräg axial Kegelpfanne Unterlegscheibe Sechskantmutter Reinigungsbürste BS Druckluft-Reinigungsgerät ABP mit Druckluftdüse: oder Ausbläser groß ABG:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Produktbeschreibung

Übersicht Systemkomponenten Teil 3 Stahlteile / Reinigungsbürste / Ausbläser Anhang A 5
Appendix 7 / 24

Tabe	Tabelle A6.1: Werkstoffe								
Teil	Bezeichnung	Material							
1	Injektionskartusche		Mörtel, Härter, Füllstoffe						
2	Reaktionspatrone		Mörtel, Härter, Füllstoffe						
		Stahl	Nichtrostender Stahl R	Hochkorrosions- beständiger Stahl HCR					
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4:2006+A1:2015	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits klasse CRC V nach EN 1993-1-4:2006+A1:2015					
		Festigkeitsklasse 8.8 EN ISO 898-1:2013	Festigkeitsklasse 80 EN ISO 3506-1:2020	Festigkeitsklasse 80 EN ISO 3506-1:2020					
3	Highbond- Ankerstange FHB II - A L oder FHB II - A S	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nachEN ISO 4042:2018 A₅ > 12 % Bruchdehnung	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 A ₅ > 12 % Bruchdehnung	1.4565; 1.4529; EN 10088-1:2014 A ₅ > 12 % Bruchdehnung					
4	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm ISO 4042:2018/Zn5/An(A2K) nachEN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014					
5	Sechskantmutter	Festigkeitsklasse 8 gemäß EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nachEN ISO 4042:2018	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 oder 80 EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1:2014					
6	Kegelpfanne oder fischer Verfüll- scheibe	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) nach EN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014					

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Spezifizierung des Verwendungszwecks Teil 1 Tabelle B1.1: Übersicht Montage und Nutzung fischer Highbond-Anker FHB II mit Injektionsmörtel FIS HB oder Reaktionspatrone FHB II-P / FHB II-PF FHB II Inject - A S 2) FHB II - A S Iniektionsmörtel FIS HB oder Iniektionsmörtel FIS HB Reaktionspatrone FHB II-P / FHB II-PF Hammerbohren alle Größen mit Standardbohrer alle Größen Hammerbohren (fischer "FHD": Heller "Duster Expert": Bosch "Speed Clean": Hilti "TE-CD. TE-YD": mit Hohlbohrer DreBo "D-Plus, D-Max") alle Größen Diamantbohren keine Leistung bewertet (nur mit Reaktionspatrone zulässig) ungerissenen Statische und alle Größen alle Größen Beton quasi-statische Beanspruchung Tabellen: C1.1, C2.1, C3.1, C3.2, Tabellen: C1.1, C2.1, C4.1, C5.2 gerissenen tuna. im C4.1, C5.1, C5.2 Beton trockener oder alle Größen Montagenasser Beton und wasser-Nutzunasalle Größen aefülltes keine Leistung bewertet bedingungen 12 (nur mit Reaktionspatrone zulässig) Bohrloch Seismische Leistungskeine Leistung bewertet kategorie C1 und C2 D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung Vorsteckalle Größen montage Montageart Durchsteckalle Größen montage FIS HB: $T_{i,min} = -5$ °C bis $T_{i,max} = +40$ °C Einbautemperatur 1) FHB II-P / PF: $T_{i,min} = -5$ °C bis $T_{i,max} = +40$ °C Gebrauchs-Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C temperaturbereich T2 maximale Langzeittemperatur +50 °C) bereiche 1) Für die übliche Temperaturveränderung nach dem Einbau Abbildungen nicht maßstäblich fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 1 Verwendungszweck Appendix 9 / 24 Spezifikationen Teil 1

Spezifizierung des Verwendungszwecks Teil 2

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Für alle anderen Bedingungen gemäß EN1993-1-4: 2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A 6 Tabelle A6.1.

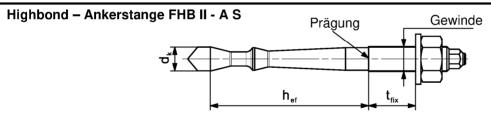
Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055. Fassung Februar 2018

Einbau:

- Einbau des Dübels durch entsprechend geschulten Personals unter der Aufsicht des Bauleiters
- Überkopfmontage erlaubt (notwendiges Zubehör siehe Montageanleitung)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer


Tabelle B3.1: Montagekennwerte für Highbond - Ankerstangen FHB II - A S							
Ankerstange FHB II - A S Ge			ewinde	M16x95	M20x170	M24x170	
Zugehörige Reaktionspatrone FHB II-P bzw. FHB II-PF		[-]	16x95	20x170	24x170		
Konusdurchmess	ser	dk		14,5	23	3,0	
Schlüsselweite		SW		24	30	36	
Bohrernenndurch	ımesser	d ₀		16	2	5	
Bohrlochtiefe		h_0		110	190		
Effektive Veranke	erstiefe	h _{ef}		95	170		
Minimale Rand- und Achsabstände Smin = Cmin		[mm]	50	8	0		
Durchmesser des Durch-	Vorsteck- montage	d₁≤		18	22	26	
gangslochs im Durchsteck- Anbauteil montage d _f ≤		d₁≤	1	18	2	6	
Minimale Dicke des Betonbauteils h _{min}			150	24	40		
Montagedrehmoment T _{inst}		[Nm]	50	10	00		

38

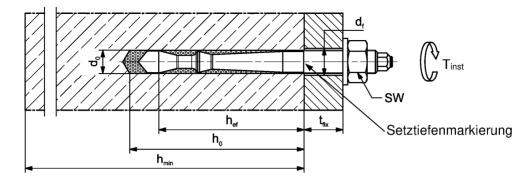
1500 46

8

[mm]

t_{fix}≤

≥ d_a


ts

Prägung: Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: M16x95 Bei nichtrostendem Stahl zusätzlich "R" und bei hochkorrosionsbeständiger Stahl zusätzlich "HCR". Hochkorrosionsbeständiger Stahl zusätzlich "(" auf der Stirnseite

Einbauzustände:

Dicke des Anbauteils

fischer Verfüllscheibe 1)

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Montagekennwerte für Highbond - Ankerstange FHB II - A S

Anhang B 3
Appendix 11 / 24

54

10

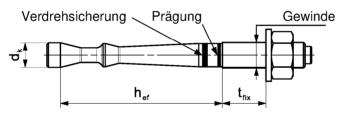
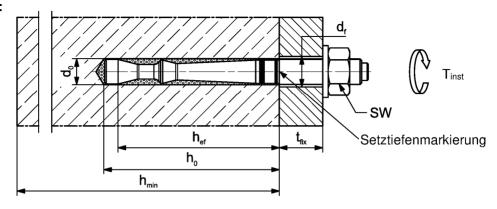

¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Tabelle B4.1: Montagekennwerte für Highbond - Ankerstangen FHB II Inject - A S mit Injektionsmörtel FIS HB

Ankerstange FH	IB II Inject - A S	Ge	ewinde	M16x95	M20x170	M24x170
Konusdurchmess	ser	dk		14,5	23	3,0
Schlüsselweite		SW		24	30	36
Bohrernenndurch	nmesser	d ₀		16	2	5
Bohrlochtiefe		h ₀		101	17	76
Effektive Veranke	erstiefe	h _{ef}		95	17	70
Minimale Rand- und Achsabstände		[mm]	50	8	0	
Durchmesser des Durch-	Vorsteck- montage	d₁≤		18	22	26
gangslochs im Anbauteil	Durchsteck- montage	d₁≤		20	2	6
Minimale Dicke de	es Betonbauteils	h_{min}		150	24	10
Montagedrehmoment T _{inst}		[Nm]	50	100		
Dicke des Anbauteils t _{fix} ≤				1500		
fischer Verfüllsch	noiho 1)	≥ da	[mm]	38	46	54
		ts		7	8	10


¹⁾ Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

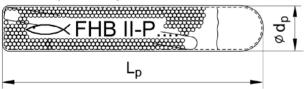
Highbond - Ankerstange FHB II Inject - A S

Prägung: Werkzeichen, Gewindedurchmesser, Verankerungstiefe z.B.: M16x95 Bei nichtrostendem Stahl zusätzlich "R" und bei hochkorrosionsbeständiger Stahl zusätzlich "HCR". Hochkorrosionsbeständiger Stahl zusätzlich "(" auf der Stirnseite

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer


Verwendungszweck

Montagekennwerte für Highbond - Ankerstange FHB II Inject - A S

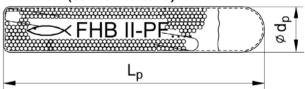

Anhang B 4
Appendix 12 / 24

Tabelle B5.1: Abmessungen der Reaktionspatronen FHB II-P und FHB II-PF							
Reaktionspatrone 16x95 20x170 24x170							
Patronenlänge	Lp	[mm]	120	185	185		
Patronendurchmesser	Ø d₀	[mm]	14,5	21	.5		

FHB II-P (standard)

FHB II-PF (schnell härtend)

Aufdruck: Werkzeichen, Gewindedurchmesser, Gefahrenhinweis und effektive Verankerstiefe.

z.B.: FHB II-P 16x95 oder

✓ FHB II-PF 16x95

Tabelle B5.2: Kennwerte der **Reinigungsbürsten** BS (Stahlbürste mit Stahlborsten; nur bei der Anwendung mit Injektionsmörtel oder bei der Anwendung mit Reaktionspatrone im diamantgebohrten Bohrloch)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d ₀	[mm]	16	25
Stahlbürsten- durchmesser BS	d _b	[mm]	20	27

Abbildungen nicht maßstäblich

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck

Abmessungen Reaktionspatrone

Kennwerte der Reinigungsbürsten BS (Stahlbürsten mir Stahlborsten)

Anhang B 5
Appendix 13 / 24

Tabelle B6.1: Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit des Injektionsmörtels FIS HB

Temperatur im Verankerungsgrund 1) [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ²⁾ t _{cure}
-5 bis 0 ³⁾	-	6 h
> 0 bis 5 ³⁾	-	3 h
> 5 bis 10	15 min	90 min
> 10 bis 20	6 min	35 min
> 20 bis 30	4 min	20 min
> 30 bis 40	2 min	12 min

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

Tabelle B6.2: Minimale Aushärtezeit der Reaktionspatrone FHB II-P und FHB II-PF

Reaktionspatrone FHB II-P (standard)							
Temperatur im Verankerungsgrund 1) [°C]	Minimale Aushärtezeit ²⁾ t _{cure}						
-5 bis 0	4 h						
> 0 bis 10	45 min						
> 10 bis 20	20 min						
> 20	10 min						

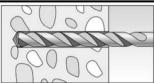
Reaktionspatrone FHB II-PF (schnell härtend)					
Temperatur im Verankerungsgrund 1) [°C]	Minimale Aushärtezeit ²⁾				
-5 bis 0	8 min				
> 0 bis 10	6 min				
> 10 bis 20	4 min				
> 20	2 min				

¹⁾ Die Temperatur im Verankerungsgrund darf während der Aushärtezeit die minimalen Temperaturen nicht unterschreiten.

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verarbeitungs- und Aushärtezeiten

Anhang B 6
Appendix 14 / 24


²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln

³⁾ Minimal Kartuschentemperatur +5 °C

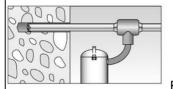
²⁾ Im nassen Beton oder wassergefülltem Bohrloch ist die Aushärtezeit zu verdoppeln

Montageanleitung Teil 1; Montage mit Reaktionspatrone FHB II-P oder FHB II-PF Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen.
Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabelle B3.1**Bohrlochreinigung ist nicht notwendig

Mit Schritt 6 fortfahren (Anhang B 8)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

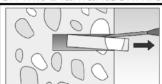
1

Einen geeigneten Hohlbohrer (siehe Tabelle B1.1) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten.Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein.

Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1


Mit Schritt 6 fortfahren (Anhang B 8)

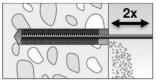
Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)

1

Bohrloch erstellen, Bohrlochdurchmesser **d**₀ und **h**₀ siehe **Tabelle B3.1**

Bohrkern brechen und herausziehen

2


Bohrloch spülen, bis das Wasser klar wird

3

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)


4

Bohrloch zweimal ausbürsten. Entsprechende Bürsten siehe **Tabelle B5.2**

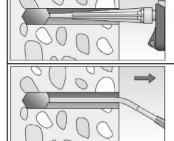
5

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar)

Mit Schritt 6 fortfahren (Anhang B 8)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck


Montageanleitung Teil 1 Montage mit Reaktionspatrone FHB II-P oder FHB II-PF Anhang B 7
Appendix 15 / 24

Montageanleitung Teil 2: Montag mit der Reaktionspatrone FHB II-P oder FHB II-PF Montage Highbond-Ankerstange FHB II - A S 6 Reaktionspatrone FHB II-P oder FHB II-PF in das Bohrloch stecken Vorsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten 7 Durchsteckmontage: Nur Highbond-Ankerstange FHB II - A S mit Dachspitze verwenden. Die Ankerstange mit Hammerbohrmaschine oder Schlagbohrmaschine drehend-schlagend montieren. Beim Erreichen der Setztiefenmarkierung Maschine sofort ausschalten Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein 8 Durchsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein und im Anbauteil sichtbar sein Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer 8a Zentrierkeile) fixieren 9 Aushärtezeit abwarten, teure siehe Tabelle B6.2 Sechskantmutter mit Montagedrehmoment Tinst anziehen siehe 10 Tabellen B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 8 Verwendungszweck Montageanleitung Teil 2 Appendix 16 / 24 Montage mit Reaktionspatrone FHB II-P oder FHB II-PF

Montageanleitung Teil 3: Montage Injektionsmörtel FIS HB Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer) Bohrloch erstellen 1 Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabellen B3.1. B4.1 Bohrloch reinigen. Bohrloch zweimal ausblasen. Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen Für Bohrdurchmesser do = 16 mm mit 2 Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Für Bohrdurchmesser do = 25 mm mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse Bohrloch mit Stahlbürste zweimal 3 ausbürsten. Zugehörige Bürsten siehe Tabelle 5.2 Bohrloch reinigen. Bohrloch zweimal ausblasen. Falls vorhanden, stehendes Wasser aus dem Bohrloch entfernen. Für Bohrdurchmesser do = 16 mm mit 4 Handausbläser AB-G oder Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Für Bohrdurchmesser do = 25 mm mit Druckluft-Reinigungsgerät mit ölfreier Druckluft ausblasen (≥ 6 bar). Verwendung einer Druckluftdüse Mit Schritt 5 fortfahren (Anhang B 10) Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer) Einen geeigneten Hohlbohrer (siehe Tabelle B1.1) 1 auf Funktion der Staubabsaugung prüfen Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten. Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsvstem 2 muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabelle B3.1, B4.1 Mit Schritt 5 fortfahren (Anhang B 10) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 9 Verwendungszweck Montageanleitung Teil 3 Appendix 17 / 24 Montage mit Injektionsmörtel FIS HB

Montageanleitung Teil 4; Montage mit Injektionsmörtel FIS HB Kartuschenvorbereitung Verschlusskappe abschrauben Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein) Kartusche in das Auspressgerät legen Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Einbringen des Injektionsmörtels

8

Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

Bei Bohrlochtiefen ≥ 170 mm Injektionshilfe verwenden

Mit Schritt 9 fortfahren (Anhang B 11)

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Verwendungszweck Montageanleitung Teil 4

Montage mit Injektionsmörtel

Anhang B 10

Appendix 18 / 24

Montageanleitung Teil 5: Montage mit Injektionsmörtel FIS HB Montage mit Highbond-Ankerstange FHB II - A S oder FHB II Inject - A S Vorsteck- oder Druchsteckmontage: 9 Die Ankerstange mit leichten Drehbewegungen in das Bohrloch bis zum Bohrlochgrund eindrücken. Nur saubere und ölfreie Stahlteile verwenden. Vorsteckmontage: Nach dem Setzen der Ankerstange muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. 10 **Durchsteckmontage:** Nach dem Setzen der Ankerstange muss Überschussmörtel aus der Bohrung des Anbauteils austreten bzw. in der Bohrung des Anbauteils sichtbar sein. Bei Überkopfmontage die Ankerstange 10a mit Keilen fixieren. (z.B. fischer Zentrierkeile) Aushärtezeit abwarten, tcure 11 siehe Tabelle B6.1 12 Sechskantmutter mit Montagedrehmoment T_{inst} anziehen siehe B3.1, B4.1 Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Ankerstange und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel Option FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich tfix (Nutzlänge des Anker) fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer Anhang B 11 Verwendungszweck Montageanleitung Teil 5 Appendix 19 / 24 Montage mit Injektionsmörtel

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstange FHB II - A S und FHB II Inject - A S

Ankerstange FH	IB II - A S / FHB II Inject - A	AS	M16x95	M20x170	M24x170
Charakteristisc	her Widerstand gegen S	tahlv	ersagen unter Zugbe	anspruchung	
Charakteris-	Stahl verzinkt	[kN]	61,6	128	3,5
tischer	Nichtrostender Stahl R				
Widerstand N _{Rk,s}	Hochkorrosions- beständiger Stahl HCR	[]	61,6	128	3,5
Teilsicherheitsl	beiwerte 1)				
	Stahl verzinkt			1,5 ¹⁾	
Teilsicherheits Beiwert	Nichtrostender Stahl R	., [1,5 ¹⁾		
γ _{Ms,N}	Hochkorrosions- beständiger Stahl HCR	[-]		1,5 1)	
Charakteristisc	her Widerstand gegen S	tahlve	ersagen unter Querb	eanspruchung	
Ohne Hebelarm	1				
Charakteris-	Stahl verzinkt		50,8	80,3	114,2
tischer	Nichtrostender Stahl R	[kN]	62,7	97,9	124,5
Widerstand V ⁰ Rk,s	Hochkorrosions- beständiger Stahl HCR	- [KIN]	62,7	97,9	141
Duktilitätsfaktor	k ₇	[-]		1,0	
Mit Hebelarm					
Charakteris-	Stahl verzinkt		266	519	896
tischer	Nichtrostender Stahl R	[Nm]			
Widerstand M ⁰ _{Rk,s}	Hochkorrosions- beständiger Stahl HCR	ַנייייין <u> </u>	266	519	896
Teilsicherheitsl	beiwerte 1)				
T eilsicherheitsbe	eiwert γ _{Ms,V}	[-]		1,25	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Leistung

Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Highbond-Ankerstangen FHB II - A S und FHB II Inject - A S

Anhang C 1
Appendix 20 / 24

		Wider	stand gegen Betor	nversagen unter Z u	ıg- / Quer-		
beanspruchung Ankerstange FHB II - A S / FHB II Inject - A S Alle Größen							
Charakteristischer Widerstand gegen Betonversagen unter Zugbeanspruchung							
Montagebeiwert γ _{inst} [-] Siehe Anhänge C 3 bis C 4							
Faktoren für Betondruckfestigkeiten > C20/25							
	C25/30			1,12			
- Erbähungsfaktor vir für	C30/37			1,22			
Erhöhungsfaktor ψ _c für _ gerissenen oder	C35/45	•		1,32			
ungerissenen Beton	C40/50	[-]		1,41			
$N_{Rk,p} = \psi_c N_{Rk,p} (C20/25)$	C45/55			1,50			
_	C50/60	l .		1,58			
Versagen durch Spalten				,			
Randabstand	C _{cr,sp}			2 h _{ef}			
Achsabstand	S _{cr,sp}	[mm]		4 h _{ef}			
Versagen durch Betonausbr							
Ungerissener Beton	k _{ucr,N}		11,0 ¹⁾				
Gerissener Beton	k _{cr,N}	[-]	7,7 1)				
Randabstand	Ccr,N	[1,5 h _{ef}				
Achsabstand	S _{cr} ,N	[mm]		3 h _{ef}			
Charakteristischer Widersta	nd gegen B	etonve	ersagen unter Querb	eanspruchung			
Montagebeiwert	γinst	[-]		1,0			
Betonausbruch auf der lasta	bgewandte	n Seite	е				
Faktor für Betonausbruch	k ₈	[-]		2,0			
Betonkantenausbruch							
Ankerstange FHB II - A S und FHB II Inject - A S	d		M16x95	M20x170	M24x170		
Effektive Länge des Stahlteils unter Querbeanspruchung	lf	[mm]	95	17	70		
Rechnerischer Durchmesser	d _{nom}		16 25				
1) Bezogen auf Betonzylinde	rdruckfestig	keit					

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

Leistung

Charakteristischer Widerstand gegen Betonversagen unter Zug- / Querbeanspruchung

Anhang C 2
Appendix 21 / 24

Tabelle 03.	Highbon	d-Ankers	stange		agen durch Hera der Reaktionspatro loch; 50 Jahre	
Highbond-An	kerstange FHB	II - A S 1)		M16x95	M20x170	M24x170
Charakteristi	scher Widerstar	nd gegen	Versag	en durch Herauszieh	en	
Rechnerische	Durchmesser	d	[mm]	16	2	25
Ungerissener	Beton					
Charakteristi	scher Widerstar	nd im ung	erisser	en Beton C20/25		
<u> Diamantbohre</u>	n (trockener ode	r nasser B	Beton / w	vassergefülltes Bohrlo	<u>ch)</u>	
Temperatur- pereich T2	50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	51,5	11	8,5
Gerissener B	eton					
Charakteristi	scher Widerstar	nd im geri	issenen	Beton C20/25		
Diamantbohre	n (trockener ode	r nasser B	eton / w	<u>rassergefülltes Bohrloo</u>	ch)	
Temperatur- oereich T2	50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	42,8	101,4	
Montagebeiw	erte					
Frockener ode	r nasser Beton	- 06 .	r 1		1,2	
Nassergefüllte	s Bohrloch	γinst	[-]		1,2	
	Highbon	d-Ankers	stange	FHB II - A S mit o	der Reaktionspatr	usziehen der one FHB II-P
	Highbond oder FHB kerstange FHB	d-Ankers II-PF im	stange diama	e FHB II - A S mit of antgebohrten Bohrl	der Reaktionspatr loch; 100 Jahre M20x170	
Charakteristi	Highbond oder FHB kerstange FHB scher Widerstar	d-Ankers II-PF im II - A S 1) nd gegen	stange diama Versag	e FHB II - A S mit of antgebohrten Bohrl M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170	M24x170
Charakteristi	Highbond oder FHB kerstange FHB	d-Ankers II-PF im	stange diama	e FHB II - A S mit of antgebohrten Bohrl	der Reaktionspatr loch; 100 Jahre M20x170	one FHB II-P
Charakteristis Rechnerischei Jngerissener	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton	d-Ankers II-PF im II - A S 1) nd gegen	stange diama Versag	e FHB II - A S mit of antgebohrten Bohrl M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170	M24x170
Charakteristis Rechnerischer Ungerissener Charakteristis	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan	d-Ankers II-PF im II - A S 1) Ind gegen d	stange diama Versag [mm]	M16x95 en durch Herauszieh 16 en Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en	M24x170
Charakteristis Rechnerischer Ungerissener Charakteristis Diamantbohre	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan	d-Ankers II-PF im II - A S 1) Ind gegen d	stange diama Versag [mm]	e FHB II - A S mit of antgebohrten Bohrl M16x95 en durch Herauszieh	der Reaktionspatr loch; 100 Jahre M20x170 en	M24x170
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan	d-Ankers II-PF im II-AS d d d d d d d md im ung r nasser B	stange diama Versag [mm]	M16x95 en durch Herauszieh 16 en Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Gerissener B	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan n (trockener ode	d-Ankers II-PF im II-AS d gegen d d im ung r nasser B	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog 51,5	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Femperatur- Dereich T2 Gerissener B Charakteristis	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan n (trockener ode 50 °C / 80 °C	d-Ankers II-PF im II-AS II-AS II-AS II-AS II-AS II-AS II-AS II-AS III-AS	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog 51,5 Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Gerissener B Charakteristis Diamantbohre	Highbone oder FHB kerstange FHB scher Widerstan Durchmesser Beton scher Widerstan n (trockener ode 50 °C / 80 °C	d-Ankers II-PF im II-AS II-AS II-AS II-AS II-AS II-AS II-AS II-AS III-AS	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog 51,5	der Reaktionspatr loch; 100 Jahre M20x170 en 2	M24x170
Charakteristis Rechnerischer Ingerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Gerissener B Charakteristis Diamantbohre Temperatur-	Highbone oder FHB kerstange FHB scher Widerstange Durchmesser Beton scher Widerstann (trockener ode) 50 °C / 80 °C eton scher Widerstann (trockener ode)	d-Ankers II-PF im II-AS II-AS II-AS II-AS II-AS II-AS II-AS II-AS III-AS	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 //assergefülltes Bohrlog 51,5 Beton C20/25	der Reaktionspatr loch; 100 Jahre M20x170 en 2 ch) 11	M24x170
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Temperatur- pereich T2 Charakteristis Diamantbohre Charakteristis Diamantbohre Temperatur- pereich T2	Highbone oder FHB kerstange FHB scher Widerstange Durchmesser Beton scher Widerstann (trockener ode) 50 °C / 80 °C eton scher Widerstann (trockener ode) 50 °C / 80 °C	d-Ankers II-PF im II-AS II-AS II-AS II-AS II-AS II-AS II-AS II-AS III-AS	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog vassergefülltes Bohrlog	der Reaktionspatr loch; 100 Jahre M20x170 en 2 ch) 11	M24x170 85 8,5
Charakteristis Rechnerischer Ingerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Charakteristis Diamantbohre Temperatur- Diamantbohre Temperatur- Diereich T2 Montagebeiw	Highbone oder FHB kerstange FHB scher Widerstange Durchmesser Beton scher Widerstann (trockener ode 50 °C / 80 °C eton scher Widerstann (trockener ode 50 °C / 80 °C	d-Ankers II-PF im II-AS ¹⁾ II-AS ¹⁾ Ind gegen d II-M im ung Ind im ung Ind im ung Ind im ung Ind im geri	Versag [mm] erissen [kN] ssenen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog vassergefülltes Bohrlog	ch) 1,2	M24x170 85 8,5
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Gerissener B Charakteristis Diamantbohre Temperatur- Diementur- Dereich T2 Montagebeiw Trockener oder	Highbond oder FHB kerstange FHB scher Widerstand Durchmesser Beton scher Widerstand (trockener ode) scher Widerstand (trockener ode) scher Widerstand (trockener ode) 50 °C / 80 °C eton scher Widerstand (trockener ode) 50 °C / 80 °C	d-Ankers II-PF im II-AS II-AS II-AS II-AS II-AS II-AS II-AS II-AS III-AS	Versag [mm] erissen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog vassergefülltes Bohrlog	ch)	M24x170 85
Charakteristis Rechnerischer Jngerissener Charakteristis Diamantbohre Temperatur- Dereich T2 Gerissener B Charakteristis Diamantbohre Temperatur- Dereich T2 Montagebeiw Trockener oder Wassergefüllte	Highbone oder FHB kerstange FHB scher Widerstange Durchmesser Beton scher Widerstann (trockener ode 50 °C / 80 °C eton scher Widerstann (trockener ode 50 °C / 80 °C ette r nasser Beton s Bohrloch	d-Ankers II-PF im II-AS 1) III-AS 1	Versag [mm] erissen [kN] ssenen [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog vassergefülltes Bohrlog	ch) 1,2 1,2 1,2	M24x170 85
Charakteristis Rechnerischer Ungerissener Charakteristis Diamantbohre Temperatur- bereich T2 Gerissener B Charakteristis Diamantbohre Temperatur- bereich T2 Montagebeiw Trockener oder Wassergefüllte	Highbond oder FHB kerstange FHB scher Widerstanger Durchmesser Beton scher Widerstann (trockener ode) 50 °C / 80 °C eton scher Widerstann (trockener ode) 50 °C / 80 °C eton scher Widerstann (trockener ode) 50 °C / 80 °C erte r nasser Beton s Bohrloch d-Ankerstange F	d-Ankers II-PF im II-AS	Versage [mm] erissen [kN] ssenen kN] [kN]	M16x95 en durch Herauszieh 16 en Beton C20/25 vassergefülltes Bohrlog 51,5 Beton C20/25 vassergefülltes Bohrlog 36,0	ter Reaktionspatroch; 100 Jahre M20x170 en 2 ch) 1,2 1,2 HB II-P / FHB II-PF	M24x170 85

Tabelle C4.1: Charakteristischer Widerstand gegen Versagen durch Herausziehen der Highbond-Ankerstange FHB II - A S mit der Reaktionspatrone FHB II-P / FHB II-PF oder dem Injektionsmörtel FIS HB und Highbond-Ankerstange FHB II Inject - A S mit Injektionsmörtel FIS HB im hammergebohrten Bohrloch: 100 Jahre

Highbond-Ankerstange FHE Highbond-Ankerstange FHE		A S ²⁾	M16x95	M20x170	M24x170			
Charakteristischer Widerstand gegen Versagen durch Herausziehen								
Rechnerischer Durchmesser	Rechnerischer Durchmesser d [mm			25				
Ungerissener Beton								
Charakteristischer Widersta	and im ung	erisser	nen Beton C20/25					
Hammerbohren mit Standard	- oder Hohl	<u>bohrer (</u>	trockener oder nasser	Beton / wassergefüllte	es Bohrloch)			
Temperatur- bereich T2 50 °C / 80 °C	$N_{\text{Rk,p,ucr,100}}$	[kN]	52,4	118	3,5			
Gerissener Beton								
Charakteristischer Widersta	and im geri	issenen	Beton C20/25					
Hammerbohren mit Standard	- oder Hohl	<u>bohrer (</u>	trockener oder nasser	Beton / wassergefüllte	es Bohrloch)			
Temperatur- bereich T2 50 °C / 80 °C	$N_{\text{Rk,p,cr,100}}$	[kN]	36,0	86	5,0			
Montagebeiwerte								
Trockener oder nasser Beton		ſ 1	1,0					
Wassergefülltes Bohrloch (nur mit Reaktionspatrone)	γinst	[-]	1,0					
1) Highbond-Ankerstange	FHB II - A S	Reakti	onspatrone FHB II-P /	FHB II-PF oder				

¹⁾ Highbond-Ankerstange FHB II - A S Reaktionspatrone FHB II-P / FHB II-PF oder Iniektionsmörtel FIS HB

fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nutzungsdauer

²⁾ Highbond-Ankerstange FHB II Inject - A S mit Injektionsmörtel FIS HB

SN∞-Faktor S	0,045 0,016 0,045 0,02 0,03 r effektiven Verschiebung: V e Querbeanspruchung n FHB II - A S und
Non-Faktor No	0,045 0,016 0,045 0,02 0,03 r effektiven Verschiebung: V e Querbeanspruchung n FHB II - A S und
Nov-Faktor Nov-Faktor Nove-Faktor	0,045 0,016 0,045 0,02 0,03 r effektiven Verschiebung: V e Querbeanspruchung n FHB II - A S und
Non-Faktor N	0,016 0,045 0,02 0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
No-Faktor No	0,045 0,02 0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
SN∞-Faktor S	0,045 0,02 0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
Nove-Faktor	0,02 0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
Ungerissener oder gerissener Beton; Temperaturbereich T2 δνο-Faktor [mm/kN] 0,02 0,02 δνω-Faktor 0,03 0,03 1) Berechnung der effektiven Verschiebung: 2) Berechnung de δνο = δνο-Faktor · N δνο = δνο-Faktor · N δνω = δνω-Faktor · N δνω = δνω-Faktor · N N = einwirkende Zugbeanspruchung V = einwirkende Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II nject - A S; 100 Jahre Highbond-Ankerstangen FHB II – A S / FHB II Inject - A S Werschiebungs-Faktoren unter Zugbeanspruchung ¹) Ungerissener Beton; Temperaturbereich T2 δνο-Faktor [mm/kN] 0,030 0,020 δνω-Faktor 0,045	0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
Sovo-Faktor	0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
Sove-Faktor	0,03 r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
δνω-Faktor 0,03 0,03 1) Berechnung der effektiven Verschiebung: 2) Berechnung de δνι = δνιο-Faktor · N δνι = δνιο-Faktor · N δνω = δνω-Faktor · N δνω = δνω-Faktor · N N = einwirkende Zugbeanspruchung V = einwirkende Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen FHB II nject - A S; 100 Jahre Highbond-Ankerstangen FHB II – A S / FHB II Inject - A S M16x95 M20x17 Verschiebungs-Faktoren unter Zugbeanspruchung ¹) W16x95 M20x17 Ungerissener Beton; Temperaturbereich T2 δηιο-Faktor 0,030 0,020 δηιο-Faktor 0,030 0,020 δηιο-Faktor 0,120 0,045	r effektiven Verschiebung: V V e Querbeanspruchung n FHB II - A S und
$\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \text{N} \qquad \delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot \text{N} \\ \delta_{\text{N\infty}} = \delta_{\text{N\infty-Faktor}} \cdot \text{N} \qquad \delta_{\text{V\infty}} = \delta_{\text{V\infty-Faktor}} \cdot \text{N} \\ \text{N} = \text{einwirkende Zugbeanspruchung} \qquad \text{V} = \text{einwirkende} \\ \text{Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen} \\ \text{FHB II Inject - A S; 100 Jahre} \\ \text{Highbond-Ankerstangen} \\ \text{FHB II - A S /} \\ \text{FHB II Inject - A S} \\ \text{Verschiebungs-Faktoren unter Zugbeanspruchung} \\ \text{Verschiebungs-Faktoren unter Zugbeanspruchung} \\ \text{Ungerissener Beton; Temperaturbereich T2} \\ \delta_{\text{N0-Faktor}} \\ \delta_{\text{N\infty-Faktor}} \\ \text{0,030} \\ \delta_{\text{N\infty-Faktor}} \\ \text{0,045} \\ \text{0,120} \\ \text{0,045} \\ \text{0.045}$	V ve Querbeanspruchung n FHB II - A S und
δN0 = δN0-Faktor · N δv0 = δv0-Faktor · N δN∞ = δN∞-Faktor · N δv∞ = δv∞-Faktor · N N = einwirkende Zugbeanspruchung V = einwirkende Tabelle C5.2: Verschiebungen für Highbond-Ankerstangel FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II - A S / FHB II Inject - A S M16x95 FHB II Inject - A S Verschiebungs-Faktoren unter Zugbeanspruchung ¹¹ Ungerissener Beton; Temperaturbereich T2 δN0-Faktor 0,030 0,020 δN∞-Faktor 0,120 0,045	V ve Querbeanspruchung n FHB II - A S und
$\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \text{N} \qquad \qquad \delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Faktor}} \cdot \text{N}$ $N = \text{einwirkende Zugbeanspruchung} \qquad V = \text{einwirkende}$ $\text{Tabelle C5.2: Verschiebungen für Highbond-Ankerstangen}$ $\text{FHB II Inject - A S; 100 Jahre}$ $\text{Highbond-Ankerstangen}$ FHB II - A S / $\text{FHB II Inject - A S}$ $\text{Verschiebungs-Faktoren unter Zugbeanspruchung} \stackrel{\text{I}}{\text{N}}$ $\text{Ungerissener Beton; Temperaturbereich T2}$ $\delta_{\text{N}\infty\text{-Faktor}} \qquad \delta_{\text{N}\infty\text{-Faktor}} \qquad 0,030 \qquad 0,020$ $\delta_{\text{N}\infty\text{-Faktor}} \qquad 0,030 \qquad 0,020$ $\delta_{\text{N}\infty\text{-Faktor}} \qquad 0,030 \qquad 0,045$	V e Querbeanspruchung n FHB II - A S und
N = einwirkende Zugbeanspruchung Tabelle C5.2: Verschiebungen für Highbond-Ankerstanger FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II - A S / M16x95 M20x17 FHB II Inject - A S Verschiebungs-Faktoren unter Zugbeanspruchung ¹¹⟩ Ungerissener Beton; Temperaturbereich T2 δNo-Faktor 0,030 0,020 δN∞-Faktor 0,045	e Querbeanspruchung n FHB II - A S und
Tabelle C5.2: Verschiebungen für Highbond-Ankerstanger FHB II Inject - A S; 100 Jahre Highbond-Ankerstangen FHB II – A S / M16x95 M20x17 FHB II lnject - A S Verschiebungs-Faktoren unter Zugbeanspruchung ¹¹ Ungerissener Beton; Temperaturbereich T2 δNo-Faktor 0,030 0,020 δN∞-Faktor 0,045	n FHB II - A S und
$ δ_{N0-Faktor} $ $ δ_{N∞-Faktor} $ $ [mm/kN] $ $ 0,030 $ $ 0,020 $ $ 0,045 $	
$\delta_{\text{N}_{\infty}\text{-Faktor}}$ [mm/kN] 0,120 0,045	
δN_{∞} -Faktor 0,120 0,045	0,016
Gerissener Beton; Temperaturbereich T2	0,045
$\delta_{\text{N0-Faktor}}$ [mm/kN] 0,030 0,020	0,016
$\delta_{N_{\infty}-Faktor}$ 0,120 0,045	0,045
Verschiebungs-Faktoren unter Querbeanspruchung 2)	
Ungerissener oder gerissener Beton; Temperaturbereich T2	
δνο-Faktor 0,02 0,02	0,02
δv∞-Faktor 0,03 0,03	0,03
1) Berechnung der effektiven Verschiebung: 2) Berechnung de	r effektiven Verschiebung:
$\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot N$ $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot N$	√ ·
$\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot N \qquad \qquad \delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot$	V
N = einwirkende Zugbeanspruchung $V = einwirkende$	e Querbeanspruchung
fischer Highbond-Anker FHB II für Diamantbohren / erweiterte Nu	utzungsdauer